

# OPERATIONS ON THE FAMILY OF FUZZY SETS OF A SET AND ITS PROPERTIES THROUGH TOPOLOGY

**Dr. Sharad Pawar** 

Department of Mathematics, S.M.P. Government Girls Post Graduate College, Madhav Puram, Meerut, Uttar Pradesh, India

Article Info Volume 3 Issue 5 Page Number: 93-99 Publication Issue : September-October-2020 Article History Accepted : 15 Oct 2020 Published : 26 Oct 2020

## ABSTRACT

Generalized fuzzy topological space was introduced THROUG Mathematics Subject Classification: 54A40. The present paper is aimed to describe operations on the family of fuzzy sets of a set and discuss its properties. **Keywords :** Generalized Fuzzy Topology,  $\Gamma$ -Fuzzy Open Set,  $\Gamma$ -Fuzzy Interior,  $\Gamma$ -Fuzzy Closure

**1. Introduction and Preliminaries-** Let *X* be a nonempty set and  $F = \{\lambda \mid \lambda : X \to [0, 1]\}$  be the family of all fuzzy sets defined on *X*. Let  $\gamma : F \to F$  be a function such that  $\lambda \leq \mu$  implies that  $\gamma(\lambda) \leq \gamma(\mu)$  for every  $\lambda, \mu \in F$ . That is, each  $\gamma$  is a monotonic function defined on *F*. We will denote the collection of all monotonic functions defined on *F* by  $\Gamma(F)$  or simply  $\Gamma$ . Let  $\gamma \in \Gamma$ . A fuzzy set  $\lambda \in F$  is said to be  $\gamma$ -fuzzy *open* [3] if  $\lambda \leq \gamma(\lambda)$ . Clearly, <sup>-0</sup>, the null fuzzy set is  $\gamma$ -fuzzy open. In [3], it is established that the arbitrary union of  $\gamma$ -fuzzy open sets is again a  $\gamma$ -fuzzy open set. A subfamily *G* of *F* is called a *generalized fuzzy topology* (GFT) [3] if  $\overline{O} \in G$  and  $V(\lambda \alpha \mid \alpha \in \Delta) \in G$  whenever  $\lambda \alpha \in G$  for every  $\alpha \in \Delta$ . If  $\gamma \in \Gamma$ , it follows that *A*, the family of all  $\gamma$ -fuzzy open sets is a generalized fuzzy topology. For  $\lambda \in F$ , the  $\gamma$ -interior of  $\lambda$ , denoted by  $i\gamma(\lambda)$ , is given by  $i\gamma(\lambda) = V(\nu \in A \mid \nu \leq \lambda)$ . Moreover, in [1], it is established that for all  $\lambda \in F$ ,  $i\gamma(\lambda) \leq \lambda$ ,  $i\gamma i\gamma(\lambda) = i\gamma(\lambda)$  and  $\lambda \in A$  if and only if  $\lambda = i\gamma(\lambda)$ . A fuzzy set  $\lambda \in F$ is said to be a  $\gamma$ -fuzzy closed set if  $-1 -\lambda$  is a  $\gamma$ -fuzzy open set. The intersection of all  $\gamma$ -fuzzy closed sets containing  $\lambda \in F$  is called the  $\gamma$ -closure of  $\lambda$ . It is denoted by  $c\gamma(\lambda)$  and is given by  $c\gamma(\lambda) = A[\mu] - 1 \mu \in A, \lambda \leq \mu$ . In [1], it is established that  $c\gamma(\lambda) = -1 -i\gamma(-1-\lambda)$  for all  $\lambda \in F$ . A fuzzy point [4] xa, with support  $x \in X$  and value  $0 < \alpha \leq 1$  is defined by  $x\alpha(y) = \alpha$ , if y = x and  $x\alpha(y) = 0$ , if  $y \leq x$ . Again, for  $\lambda \in$ *F*, we say that  $x\alpha \in \lambda$  if  $\alpha \leq \lambda(x)$ . Two fuzzy sets  $\lambda$  and  $\beta$  are said to be *quasi-coincident* [4], denoted by

**Copyright :** <sup>©</sup> the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

93

 $\lambda q\beta$ , if there exists  $x \in X$  such that  $\lambda(x) + \beta(x) > 1$  [4]. Two fuzzy sets  $\lambda$  and  $\beta$  are not quasi-coincident denoted by  $\lambda^{\sim}q\beta$ , if  $\lambda(x)+\beta(x) \leq 1$  for all  $x \in X$ . Clearly,  $\lambda$  is a  $\gamma$ -fuzzy open set containing a point  $x\alpha$  if and only if  $x\alpha q\lambda$ , and  $\lambda \leq \beta$  if and only if  $\lambda^{\sim}q(1-\beta)$ . For definitions not given here, refer [2].

#### 2. Enlarging and quasi-Enlarging operations

Let *X* be a nonempty set and  $\gamma \in \Gamma$ . Let us agree in calling *operation*, any element of  $\Gamma$ . An operation  $\gamma \in \Gamma$  is said to be *enlarging* if  $\lambda \leq \gamma(\lambda)$  for every  $\lambda \in F$ . If  $B \subset F$ , then  $\gamma \in \Gamma$  is said to be *B*-*enlarging* if  $\lambda \leq \gamma(\lambda)$  for every  $\lambda \in F$ . If  $B \subset F$ , then  $\gamma \in \Gamma$  is said to be *B*-*enlarging* if  $\lambda \leq \gamma(\lambda)$  for every  $\lambda \in B$ . We will denote the family of all enlarging operations by  $\Gamma e$  and the family of all *B*-enlarging operations by  $\Gamma B$ . The easy proof of the following Theorem 2.1 is omitted.

#### Theorem 2.1.

Let *X* be a nonempty set and *F* be the family of all fuzzy sets defined on *X*. If  $C \subset B \subset F$ , then  $\Gamma B \subset \Gamma C$ .  $\Gamma e = \Gamma B$ , if B = F. An operation  $\gamma \in \Gamma$ , is said to be *quasi-enlarging* (QE) if  $\gamma(\lambda) \leq \gamma(\lambda \land A)$ 

 $\gamma(\lambda)$  for every  $\lambda \in F$ . An operation  $\gamma \in \Gamma$ , is said to be *weakly quasienlarging*(WQE) if  $\lambda \land \gamma(\lambda) \leq \gamma(\lambda \land \gamma(\lambda))$  for every  $\lambda \in F$ . If  $\gamma \in \Gamma e$ , then  $\lambda \land \gamma(\lambda) = \lambda$  for every  $\lambda \in F$  and so  $\gamma$  is quasi-enlarging. If  $\gamma$  is defined by  $\gamma(\lambda) = \beta$  for every  $\lambda \in F$ , then also  $\gamma$  is quasi-enlarging. If  $\gamma \in \Gamma$  is quasienlarging, then it is weakly quasi-enlarging, since  $\lambda \land \gamma(\lambda) \leq \gamma(\lambda) \leq \gamma(\lambda \land \gamma(\lambda))$ . The following Example 2.2 shows that a weakly quasi-enlarging operation need not be a quasi-enlarging operation.

#### Example 2.2.

Let  $X = \{x, y, z\}$ . Define  $\gamma : F \to F$ , by  $\gamma(\lambda) = -0$ , if  $\lambda = -0$ ;  $\gamma(\lambda) = \chi\{y\}$ , if  $\lambda \le \chi\{x\}$ ;  $\gamma(\lambda) = \chi\{z\}$ , if  $\lambda \le \chi\{z\}$ and  $\gamma(\lambda) = -1$  if otherwise. Then,  $\lambda \land \gamma(\lambda) = -0$ , if  $\lambda = -0$ ;  $\lambda \land \gamma(\lambda) = -0$ , if  $\lambda \le \chi\{x\}$ ;  $\lambda \land \gamma(\lambda) \le \chi\{z\}$ , if  $\lambda \le \chi\{z\}$  and  $\lambda \land \gamma(\lambda) = \lambda$  if otherwise. Therefore,  $\gamma(\lambda \land \gamma(\lambda)) = -0$ , if  $\lambda = -0$ ;  $\gamma(\lambda \land \gamma(\lambda)) = -0$ , if  $\lambda \le \chi\{x\}$ ;  $\gamma(\lambda \land \gamma(\lambda)) = \chi\{z\}$ , if  $\lambda \le \chi\{z\}$  and  $\lambda \land \gamma(\lambda) = -1$ , if otherwise and so it follows that  $\gamma$  is a weakly quasi-enlarging operator. If  $\lambda = \chi\{x\}$ , then  $\gamma(\lambda) = \chi\{y\}$  but  $\gamma(\lambda \land \gamma(\lambda)) = \gamma(-0) = \overline{O}$  and so  $\gamma$  is not a quasi-enlarging operator. If  $\gamma = \chi\{x\}$ , then the composition  $\gamma = \gamma 2$  of the two operations  $\gamma = 1$  and  $\gamma = 1$  and  $\gamma = 1$ . The following Theorem 2.3 shows that the composition of enlarging operators is again an enlarging operator and Theorem 2.5 below gives a property of quasi-enlarging operators.

#### Theorem 2.3.

Let *X* be a nonempty set and *F* be the family of all fuzzy sets defined on *X*. If  $B \subset F$ , and  $\gamma 1$  and  $\gamma 2$  are *B*-enlarging, then  $\gamma 1\gamma 2$  is also *B*-enlarging.

#### Proof.

Suppose  $\lambda \in B$ . Then  $\lambda \leq \gamma 1(\lambda)$  and  $\lambda \leq \gamma 2(\lambda)$ . Now,  $\lambda \leq \gamma 1(\gamma 2(\lambda))$ , since  $\gamma 1 \in \Gamma$ . Therefore,  $\gamma 1\gamma 2$  is *B*-enlarging.

#### Corollary 2.4.

If  $\gamma 1$ ,  $\gamma 2 \in \Gamma e$ , then  $\gamma 1 \gamma 2 \in \Gamma e$ .

### Theorem 2.5.

Let *X* be a nonempty set, *F* be the family of all fuzzy sets defined on *X* and  $B \subset F$ . If  $\gamma \in \Gamma$  is quasienlarging,  $\{\gamma(\lambda) \mid \lambda \in F\} \subset B$  and  $\mu \in \Gamma B$ , then  $\mu\gamma$  is quasi-enlarging.

### Proof.

Let  $\lambda \in F$ . Since  $\gamma$  is quasi-enlarging,  $\gamma(\lambda) \leq \gamma(\lambda \land \gamma(\lambda))$ . Since  $\gamma(\lambda) \in B$  and  $\mu \in \Gamma B$ ,  $\gamma(\lambda) \leq \mu(\gamma(\lambda))$  and so  $\gamma(\lambda) \leq \gamma(\lambda \land \mu\gamma(\lambda))$ . Therefore,  $\mu\gamma(\lambda) \leq \mu\gamma(\lambda \land \mu\gamma(\lambda))$ . Hence  $\mu\gamma$  is quasi-enlarging.

### Theorem 2.6.

Let X be a nonempty set and  $\gamma \in \Gamma$ . Then  $i\gamma$  is quasi-enlarging and  $c\gamma$  is enlarging.

### Proof.

If  $\lambda \in F$ , then  $i\gamma(\lambda) = i\gamma i\gamma(\lambda) = i\gamma(\lambda \land i\gamma(\lambda))$ , since  $i\gamma(\lambda) \le \lambda$ . So  $i\gamma$  is quasi-enlarging. Again,  $i\gamma(-1 - \lambda) \le -1 - \lambda$  and so  $\lambda = -1 - (-1 - \lambda) \le -1$ 

 $-i\gamma(-1-\lambda) = c\gamma(\lambda)$ . Therefore,  $c\gamma$  is enlarging.

### Theorem 2.7.

Let *X* be a nonempty set,  $\gamma \in \Gamma$  and *A* be the family of all  $\gamma$ -fuzzy open sets. If  $\mu \in \Gamma$ , such that  $i\gamma\mu$  is quasi-enlarging and  $\kappa \in \Gamma A$ , then  $\kappa i\gamma\mu$  is quasi-enlarging.

#### Proof.

If  $\lambda \in F$ , then  $i\gamma\mu(\lambda) \in A$ . By Theorem 2.5, it follows that  $\kappa i\gamma\mu$  is quasi-enlarging.

### Corollary 2.8.

Let *X* be a nonempty set,  $\gamma \in \Gamma$  and *A* be the family of all  $\gamma$ -fuzzy open sets. If  $\kappa \in \Gamma A$ , then  $\kappa i \gamma$  is quasi-enlarging.

### Proof.

If  $\mu : F \to F$  is the identity operator, then  $i\gamma\mu = i\gamma$  is quasi-enlarging and so the proof follows from Theorem 2.7.

Let  $\{\gamma i \in \Gamma \mid i \in \Delta \le = \emptyset\}$  be a family of operations. Define  $\phi : F \to F$  by  $\phi(\lambda) = V\{\gamma i(\lambda) \mid i \in \Delta\}$  for every  $\lambda \in F$ . The following Theorem 2.9 gives some properties of  $\phi$ .

### Theorem 2.9.

Let *X* be a nonempty set. Let  $\{\gamma i \in \Gamma \mid i \in \Delta \le = \emptyset\}$  be a family of operations. Define  $\phi : F \to F$  by  $\phi(\lambda) = V\{\gamma i(\lambda) \mid i \in \Delta\}$  for every  $\lambda \in F$ . Then the following hold. (a) $\phi \in \Gamma$ . (b) If each  $\gamma i$  is *B*-enlarging, then so is  $\phi$ .

(c) If each  $\gamma i$  is quasi-enlarging, then so is  $\phi$ .

(d) If each  $\gamma_l$  is weakly quasi-enlarging, then so is  $\phi$ .

**Proof.** (a) If  $\lambda \leq v$ , then  $\gamma \iota(\lambda) \leq \gamma \iota(v)$  and so  $\phi(\lambda) = V\{\gamma \iota(\lambda) \mid \iota \in \Delta\} \leq$ 

 $V{\gamma\iota(v) \mid \iota \in \Delta} = \phi(v)$ . Therefore,  $\phi \in \Gamma$ .

(b) Let  $\lambda \in B$ . Then, by hypothesis,  $\lambda \leq \gamma \iota(\lambda)$  for every  $\iota \in \Delta \leq = \emptyset$ . Therefore,

 $\lambda \leq \forall \gamma i(\lambda) = \phi(\lambda)$  and so  $\phi$  is *B*-enlarging.

(c) Suppose each  $\gamma i$  is quasi-enlarging. Then for  $\lambda \in F$ ,  $\phi(\lambda) = V \gamma i(\lambda) \leq 1$ 

 $V_{\gamma l}(\lambda \land \gamma l(\lambda)) \leq V_{\gamma l}(\lambda \land \phi(\lambda)) = \phi(\lambda \land \phi(\lambda))$  and so  $\phi$  is quasi-enlarging.

(d) For  $\lambda \in F$ ,  $\lambda \land \phi(\lambda) = \lambda \land (\forall \gamma \iota(\lambda)) = \forall (\lambda \land \gamma \iota(\lambda)) \leq \forall \gamma \iota(\lambda \land \gamma \iota(\lambda)) \leq$ 

 $V_{\gamma l}(\lambda \land \phi(\lambda)) = \phi(\lambda \land \phi(\lambda))$ . Therefore,  $\phi$  is weakly quasi-enlarging.

**Definition 2.10.** Let *X* be a nonempty set and  $A \subset F$ . We say that an operation  $\gamma \in \Gamma$  is *A*-*friendly*, if  $v \land \gamma(\lambda) \leq \gamma(v \land \lambda)$  for every  $\lambda \in F$  and  $v \in A$ .

The following Example 2.11 gives examples of *A*-*friendly* operators. It is clear that if  $\gamma$  is *A*-*friendly* and  $B \subset A$ , then  $\gamma$  is a *B*-*friendly* operator. Theorem 2.12 below shows that the composition of friendly operators is again a friendly operator. Theorem 2.13 shows that arbitrary union of friendly operators is again a friendly operator.

**Example 2.11.** (a) If  $\gamma : F \to F$  is defined by  $\gamma(\lambda) = \theta$  for every  $\lambda \in F$  for some  $\theta \in F$ , then  $\gamma$  is *A*-friendly for every  $A \subset F$ . (b) In any fuzzy topological space  $(X, \tau)$ , the fuzzy interior and closure operators  $i\tau$  and  $c\tau$  are  $\tau$ -friendly. That is, the following hold. (i) $i\tau(\lambda) \land v \leq i\tau(\lambda \land v)$  for every  $\lambda \in F$  and  $v \in \tau$ . (ii) $c\tau(\lambda) \land v \leq c\tau(\lambda \land v)$  for every  $\lambda \in F$  and  $v \in \tau$ .

#### Theorem 2.12.

Let *X* be a nonempty set,  $\gamma$ ,  $\gamma \in \Gamma$  and  $A \subset F$ . If  $\gamma$  and  $\gamma = A$  are *A*-friendly operators, then so is  $\gamma = \gamma$ .

**Proof.** Suppose  $A \subset F$  such that  $\gamma$  and  $\gamma 1$  are A-friendly. Then,  $\gamma(\lambda) \land v \leq \gamma(\lambda \land v)$  for every  $\lambda \in F$  and  $v \in A$ , and  $\gamma 1(\lambda) \land v \leq \gamma 1(\lambda \land v)$  for every  $\lambda \in F$  and  $v \in A$ . Replacing  $\lambda$  by  $\gamma(\lambda)$  in the second inequality, we get  $\gamma 1\gamma(\lambda) \land v \leq \gamma 1(\gamma(\lambda) \land v) \leq \gamma 1\gamma(\lambda \land v)$ . Therefore,  $\gamma 1\gamma$  is an A-friendly operator.

**Theorem 2.13.** Let X be a nonempty set,  $A \subset F$  and  $\gamma i$  is A-friendly for every  $i \in \Delta$ . Then  $\phi = V \gamma i$  is A-friendly.

**Proof.** If  $\lambda \in F$ , then for  $v \in A$ ,  $\phi(\lambda) \land v = (\forall \gamma i)(\lambda) \land v = \forall (\gamma i(\lambda)) \land v = \forall (\gamma i(\lambda) \land v) \leq \forall \gamma i(\lambda \land v) = \phi(\lambda \land v)$ . Therefore,  $\phi$  is an *A*-friendly operator.

Using friendly operators, next we construct quasi-enlarging operators using a generalized fuzzy topology (GFT). Let  $\mu \subset F$  be arbitrary. For  $\lambda \in F$ , define  $i\mu(\lambda) = V\{\beta \in \mu \mid \beta \leq \lambda\}$  and  $i\mu(\lambda) = -0$ , if no such  $\beta \in \mu$ 

exists. Let  $\mu \leq = \{-1 - \lambda \mid \lambda \in \mu\}$ . Define  $c\mu(\lambda) = A\{\beta \in \mu \mid \lambda \leq \beta\}$  and  $c\mu(\lambda) = -1$ , if no such  $\beta \in \mu \leq \alpha$  exists. If  $\mu$  is the family of all  $\gamma$ -open sets, then  $c\gamma = c\mu$  and  $i\gamma = i\mu$ .

**Theorem 2.14.** Let  $\mu \subset F$  be a GFT. If  $\gamma \in \Gamma$ , is  $\mu$ -friendly, then  $i\mu\gamma$  is quasi-enlarging.

**Proof.** If  $\xi \in F$ , then  $i\mu\gamma(\xi) = \gamma(\xi) \wedge i\mu\gamma(\xi)$ . Since  $\gamma$  is  $\mu$ -friendly,  $\gamma(\xi) \wedge i\mu\gamma(\xi) \leq \gamma(\xi \wedge i\mu\gamma(\xi))$ . Therefore,  $i\mu\gamma(\xi) = i\mu i\mu\gamma(\xi) \leq i\mu\gamma(\xi \wedge i\mu\gamma(\xi))$  and so  $i\mu\gamma$  is quasi-enlarging.

**Theorem 2.15.** Let  $\mu \subset F$  and  $\gamma \in \Gamma$  be  $\mu$ -friendly. If  $v \in \mu$  and  $\xi$  is a  $\gamma$ -fuzzy open set, then  $\xi \land v$  is again a  $\gamma$ -fuzzy open set.

**Proof.** Since  $\xi$  is a  $\gamma$ -fuzzy open set,  $\xi \leq \gamma(\xi)$ . Then for  $v \in \mu$ ,  $v \land \xi \leq v \land \gamma(\xi) \leq \gamma(v \land \xi)$  and so  $v \land \xi$  is a  $\gamma$ -fuzzy open set.

**Corollary 2.16.** Let  $\gamma \in \Gamma$ ,  $\mu$  be the family of all  $\gamma$ -fuzzy open sets and  $\gamma$  be  $\mu$ -friendly. Then  $\lambda \land v \in \mu$  whenever  $\lambda \in \mu$  and  $v \in \mu$ .

Corollary 2.16 leads to define a new subfamily of  $\Gamma$ , namely  $\Gamma 4 = \{\gamma \in \Gamma \mid \gamma \text{ is } \mu\gamma - \text{friendly}\}$  where  $\mu\gamma$  is the family of all  $\gamma$ -fuzzy open sets. Hence, if  $\gamma \in \Gamma 4$ , then the GFTS (*X*,  $\gamma$ ) is closed under finite intersection, by Corollary 2.16. We call such spaces as *Quasi-fuzzy topological spaces*. Clearly, if  $\gamma \in$  $\Gamma 14$ , then  $\mu\gamma$  is a fuzzy topological space. The following Example 2.17 shows that  $\gamma \in \Gamma 4$  does not imply that  $\gamma \in \Gamma 1$ .

**Example 2.17.** Let  $X = \mathbf{R}$ , the set of all real numbers and *F* be the family of all fuzzy sets defined on *X*. Define  $\gamma : F \to F$  by  $\gamma(\lambda) = -\alpha$  if  $-\alpha \le \lambda$ , and  $\gamma(\lambda) = \overline{O}$  if otherwise, where  $0 < \alpha < 1$ . Clearly,  $\gamma \le \epsilon \Gamma 1$ . Since  $\{-0, -\alpha\}$  is the family of all  $\gamma$ -fuzzy open sets, it follows that  $\gamma \in \Gamma 4$ .

**Theorem 2.18.** If *X* is a nonempty set, *F* is the family of all fuzzy sets defined on *X* and  $\gamma \in \Gamma 4$ , then the following hold. (a)  $i\gamma(\lambda \land v) = i\gamma(\lambda) \land i\gamma(v)$  for every fuzzy sets  $\lambda$ ,  $v \in F$ . (b)  $c\gamma(\lambda \lor v) = c\gamma(\lambda) \lor c\gamma(v)$  for every fuzzy sets  $\lambda$ ,  $v \in F$ . Proof. (a) Since  $i\gamma(\lambda) \le \lambda$  and  $i\gamma(v) \le v$ , by Corollary 2.16,  $i\gamma(\lambda) \land i\gamma(v)$  is a  $\gamma$ -fuzzy open set contained in  $\lambda \land v$  and so  $i\gamma(\lambda) \land i\gamma(v) \le i\gamma(\lambda \land v)$ . Clearly,  $i\gamma(\lambda \land v) \le i\gamma(\lambda) \land i\gamma(v)$ . This proves (a). (b) Since  $\lambda \lor v \le c\gamma(\lambda) \lor c\gamma(v) \le c\gamma(\lambda \lor v)$ , it follows that  $c\gamma(\lambda \lor v) = c\gamma(\lambda) \lor c\gamma(v)$  for every fuzzy sets  $\lambda$ ,  $v \in F$ .

**Lemma 2.19.** Let  $\lambda \in F$ ,  $\gamma \in \Gamma$  and  $\mu$  be the family of all  $\gamma$ -fuzzy open sets. Then a fuzzy point  $xt \in c\gamma(\lambda)$  if and only if for every  $\mu$ -fuzzy open set v of xt,  $vq\lambda$ .

**Proof.** Suppose  $xt \in c\gamma(\lambda)$ . Let v be a  $\mu$ -fuzzy open set of xt. If  $v \neg q\lambda$ , then  $\lambda \le (1 - v)$ . Since (1 - v) is  $\mu$ -fuzzy closed,  $c\gamma(\lambda) \le (1 - v)$ . Since  $xt \le \epsilon (1 - v)$ ,  $xt \le \epsilon c\gamma(\lambda)$ , a contradiction. Therefore,  $vq\lambda$ . Conversely, suppose  $xt \le \epsilon c\gamma(\lambda)$ . Since  $c\gamma(\lambda) = \Lambda\{\xi \mid \lambda \le \xi \text{ and } \xi \text{ is } \mu\text{-fuzzy closed}\}$ , there is a  $\mu\text{-fuzzy closed}$ , there is a  $\mu$ -fuzzy closed set  $\xi \le \lambda$  such that  $xt \le \epsilon \xi$ . Then  $1 - \xi$  is a  $\mu$ -fuzzy open sets such that  $xt \in (1 - \xi)$ . By hypothesis,  $(1 - \xi)q\lambda$ . Since  $\xi \le \lambda$ ,  $(1 - \xi)\gamma q\lambda$ , a contradiction to the hypothesis. Hence  $xt \in c\gamma(\lambda)$ .

**Theorem 2.20.** Let  $\lambda \subset F$ ,  $\gamma \in \Gamma$  be  $\lambda$ -friendly and  $\mu$  be the family of all  $\gamma$ -fuzzy open sets. Then  $c\gamma$  is  $\lambda$ -friendly.

**Proof.** Let  $v \in \lambda$ ,  $\xi \in F$  and  $xt \in v \land c\mu(\xi)$ . If  $xt \in \omega \in \mu$ , then by Theorem 2.15,  $v \land \omega$  is a  $\gamma$ -fuzzy open set containing xt. By Lemma 2.19,  $(\omega \land v)q\xi$ . Then clearly,  $\omega q(v \land \xi)$  and so  $xt \in c\mu(v \land \xi)$ . Hence  $v \land c\mu(\xi) \leq c\mu(v \land \xi)$  which implies that  $c\gamma$  is  $\lambda$ -friendly.

**Corollary 2.21** If *X* is a nonempty set, *F* is the family of all fuzzy sets on *X*,  $\gamma \in \Gamma 4$  and  $\mu$  is the family of all  $\gamma$ -fuzzy open sets, then the following hold. (a)  $c\gamma(v) \land \xi \leq c\gamma(v \land \xi)$  for every fuzzy sets  $v, \xi \in \mu$ . (b) $c\gamma(c\gamma(v) \land \xi) = c\gamma(v \land \xi)$  for every fuzzy sets  $v, \xi \in \mu$ .

(c)  $i\gamma(v \lor \zeta) \leq i\gamma(v) \lor \zeta$  for every fuzzy set v and  $\mu$ -fuzzy closed set  $\zeta$ .

(d)  $i\gamma(\nu \lor \zeta) = i\gamma(i\gamma(\nu) \lor \zeta)$  for every fuzzy set  $\nu$  and  $\mu$ -fuzzy closed set  $\zeta$ .

#### Proof.

(a) The proof follows from Theorem 2.20.

(b). Since  $v \land \xi \leq c\gamma(v) \land \xi$ , the proof follows from (a).

(c) If  $\xi$  is  $\mu$ -fuzzy closed, then  $\omega = 1 - \xi \in \mu$  and so by (a), for  $v \in F$ ,  $c\gamma(v)A$ 

 $\omega \leq c\gamma(v \wedge \omega)$  and so  $1 - c\gamma(v \wedge \omega) \leq 1 - (c\gamma(v) \wedge \omega)$ . Therefore,  $i\gamma((1 - v) \vee (1 - v))$ 

 $(\omega) \leq (-1 - c\gamma(v)) \vee (-1 - \omega)$  and so  $i\gamma((-1 - v) \vee \zeta) \leq i\gamma(-1 - v) \vee \zeta$ . If  $\psi = -1 - v$ ,

we have  $i\gamma(\psi \lor \zeta) \leq i\gamma(\psi) \lor \zeta$ , which proves (c).

(d) The proof follows from (c).

**Corollary 2.22.** Let  $\lambda \subset F$  be a GFT,  $\gamma \in \Gamma$  be  $\lambda$ -friendly and  $\mu$  be the family of all  $\gamma$ -fuzzy open sets. Then  $i\mu c\mu$  is quasi-enlarging. Proof. The proof follows from Theorem 2.14 and Theorem 2.20. In the rest of the section, we will consider a special type of enlargement whose domain is a subfamily of *F*. A function  $\kappa : \mu \rightarrow F$  is an *enlargement* if  $\lambda \leq \kappa(\lambda)$  for every  $\lambda \in \mu$ . The following are some examples of enlargements.

**Example 2.23.** Let *X* be a nonempty set, *F* be the family of all fuzzy sets defined on *X* and  $\mu \subset F$ . Define  $\kappa : \mu \to F$  by (a) $\kappa(\lambda) = \lambda$  for every  $\lambda \in \mu$ . (b)  $\kappa(\lambda) = c\mu(\lambda)$  for every  $\lambda \in \mu$ .

(c)  $\kappa(\lambda) = i\mu c\mu(\lambda)$  for every  $\lambda \in \mu$ .

Then  $\kappa$  is an enlargement in each case.

Let  $\kappa : \mu \to F$  is an enlargement. Define  $\kappa \mu = \{\lambda \in F \mid \text{For each } xt \in \lambda, \text{ there exists } v \in \mu \text{ such that } xt \in v \le \kappa(v) \le \lambda\}$ . The following Theorem 2.24

gives some properties of  $\kappa\mu$ .

**Theorem 2.24.** Let *X* be a nonempty set, *F* be the family of all fuzzy sets defined on *X*,  $\mu \subset F$  and  $\kappa : \mu \to F$  be an enlargement. The the following hold. (a)  $\kappa\mu$  is a GFT.

(b) If  $\mu$  is a GFT, then  $\kappa \mu \subset \mu$ .

**Proof.** (a) Clearly,  $0 \in \kappa\mu$ . Let  $va \in \kappa\mu$  for every  $a \in \leq$  and  $v = V\{va \mid a \in \leq\}$ . If  $xt \in v$ , where  $t \in (0, 1]$ , then  $xt \in va$  for some  $a \in \leq$ . By hypothesis, there is a  $\xi \in \mu$  such that  $xt \in \xi \leq \kappa(\xi) \leq va \leq v$ . Hence  $v \in \kappa\mu$  which implies that  $\kappa\mu$  is a GFT. (b) Let  $v \in \kappa\mu$ . Then for each  $xt \in v$  where  $t \in (0, 1]$ , there exists  $\xi x \in \mu$  such that  $\kappa(\xi x) \leq v$  and so  $xt \in \xi x \leq \kappa(\xi x) \leq v$ . Hence  $v = V\{\xi x \mid x \in v\}$ . Since  $\mu$  is a GFT,  $v \in \mu$  and so  $\kappa\mu \subset \mu$ .

#### REFERENCES

- T. Babitha, D. Sivaraj and M.R. Sitrarasu, On generalized fuzzy topology, J. Adv. Res. Pure. Maths., 2(2)(2010), 54 - 61.
- 2. C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968), 182190.
- 3. G. Palani Chetty, Generalized Fuzzy Topology, Italian J. Pure Appl. Math., 24(2008), 91 96.
- P.P. Ming and L.Y. Ming, Fuzzy Topology I. Neighborhood structure of fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl., 76(1980), 571 - 594.