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ABSTRACT : 

Subsea process equipment operates in some of the most challenging 

environments in the oil and gas industry, characterized by high pressure, 

low temperatures, corrosive fluids, and limited accessibility. These harsh 

conditions significantly increase the likelihood of mechanical and 

operational failures, often resulting in costly unplanned downtime and 

safety hazards. Traditional fault detection techniques, such as threshold-

based alarms or model-driven diagnostics, are limited in their ability to 

anticipate failures proactively, especially when data is noisy or sparse. This 

proposes a machine learning-based fault forecasting model tailored 

specifically for subsea process equipment deployed in extreme offshore 

environments. The proposed model utilizes historical sensor data, 

operational logs, and maintenance records to learn complex patterns 

associated with impending equipment faults. Key steps include robust data 

preprocessing, feature engineering sensitive to subsea dynamics, and the 

application of temporal models such as Long Short-Term Memory (LSTM) 

networks for time-series prediction. To enhance performance under data 

scarcity and imbalance, synthetic data augmentation and ensemble learning 

methods are employed. Extensive testing on both simulated datasets and 

real-world offshore operational data demonstrates the model’s ability to 

forecast failures with high precision and lead time, enabling proactive 

maintenance scheduling. Compared to traditional diagnostic systems, the 

machine learning model shows superior accuracy, recall, and robustness 

against environmental noise. Additionally, the system provides probabilistic 

forecasts that support risk-based decision-making. This work highlights the 

potential of AI-driven solutions to revolutionize asset integrity management 

in offshore energy production. By forecasting faults before they manifest, 

operators can reduce downtime, lower maintenance costs, and improve 

safety outcomes. Future research will focus on integrating digital twin 
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technologies and transfer learning techniques to further generalize the 

model across various subsea platforms and equipment types. This represents 

a significant step toward intelligent, autonomous monitoring systems in 

subsea production environments. 

Keywords: Machine learning-based, Fault, Forecasting model, Subsea 

process, Equipment, Harsh production, Environments 

 

1. Introduction 

Subsea production systems are integral components of offshore oil and gas operations, enabling the extraction 

and initial processing of hydrocarbons directly on the seabed (Awe et al., 2017; ADEWOYIN et al., 2020). 

These systems consist of complex assemblies such as subsea trees, manifolds, control modules, and pipelines, 

designed to function in remote and often extreme underwater environments. By allowing for the remote 

operation of wells and reducing the need for surface infrastructure, subsea systems enhance both the 

economic and operational viability of deepwater and ultra-deepwater fields (Akpan et al., 2017; 

OGUNNOWO et al., 2020). However, the functionality and reliability of these systems are challenged by the 

harsh subsea environment, which is characterized by high hydrostatic pressures, low temperatures, and 

corrosive conditions due to the presence of saline water and sometimes aggressive reservoir fluids (Awe, 2017; 

Oyedokun, 2019). These factors contribute to accelerated material degradation and component failures, 

potentially leading to unplanned shutdowns, environmental hazards, and significant financial losses (Omisola 

et al., 2020; ADEWOYIN et al., 2020). 

 

Despite the critical role of subsea production systems, the early detection of faults and the ability to forecast 

failures remain limited due to inherent challenges in accessibility and diagnostics (Solanke et al., 2014; Chudi 

et al., 2019). Physical inspection and maintenance operations in deepwater locations are logistically complex, 

time-consuming, and extremely costly, often requiring remotely operated vehicles (ROVs) or specialized 

intervention vessels. As a result, many failures are detected only after significant performance degradation or 

complete equipment malfunction has occurred (Magnus et al., 2011; Chudi et al., 2019). This lack of real-time 

fault visibility undermines operational efficiency and poses serious safety and environmental risks. 

Consequently, there is an urgent need for advanced methodologies that enable proactive fault detection and 

maintenance scheduling (Awe et al., 2017; Akpan et al., 2019). 

Predictive maintenance, particularly when integrated with advanced analytics and machine learning, offers a 

transformative approach to asset management in subsea operations (Ajiga, 2021; Odio et al., 2021). By 

leveraging historical and real-time sensor data, predictive models can identify patterns and trends indicative 

of impending failures. This enables operators to perform maintenance activities only when necessary, thereby 

minimizing unnecessary interventions, reducing operational downtime, and enhancing safety (Adesemoye et 

al., 2021; ADEWOYIN et al., 202). Furthermore, accurate fault forecasting allows for better resource 

allocation and planning, optimizing production continuity and extending the lifespan of critical subsea 

components (OGUNNOWO et al., 2021; Ogunnowo et al., 2021). 
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The objective of this review is to develop and validate a machine learning-based model for forecasting faults 

in subsea process equipment. The model will be designed to analyze multisource operational data to predict 

potential failures with high accuracy and reliability. By integrating data-driven intelligence into existing 

monitoring systems, this approach aims to support decision-making processes, reduce maintenance costs, and 

improve the overall efficiency and safety of offshore oil and gas operations. 

 

2.0 Methodology 

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology was 

applied to ensure transparency, reproducibility, and rigor in identifying, screening, and selecting relevant 

literature for the development of the proposed machine learning-based fault forecasting model. The review 

process commenced with a comprehensive and systematic search of multiple scholarly databases, including 

IEEE Xplore, ScienceDirect, SpringerLink, Scopus, and Web of Science. Keywords and Boolean operators 

were used to capture relevant articles, including combinations such as “machine learning,” “fault forecasting,” 

“subsea equipment,” “predictive maintenance,” and “harsh environments.” 

Initial database searches yielded a total of 1,347 articles. After removing 236 duplicate records using citation 

management software, 1,111 unique articles remained. These articles underwent a preliminary screening 

based on titles and abstracts, during which 742 articles were excluded for not meeting basic relevance criteria. 

The remaining 369 articles were evaluated through full-text analysis to assess their alignment with the study’s 

inclusion criteria, which prioritized peer-reviewed studies that applied machine learning to fault detection or 

prediction in industrial or subsea environments, particularly under harsh conditions. 

Further exclusion was applied to articles that lacked empirical validation, did not employ relevant machine 

learning models, or were focused on unrelated domains such as terrestrial infrastructure or purely theoretical 

frameworks. As a result, 87 studies were selected for qualitative synthesis. An additional 19 studies were 

excluded due to methodological limitations or insufficient detail on data sources and model performance. 

Ultimately, a total of 68 studies were included in the final review. These provided a rich basis for identifying 

current trends, data availability, modeling techniques, evaluation metrics, and domain-specific challenges 

relevant to subsea fault prediction under adverse environmental conditions. The PRISMA flow ensured a 

structured and evidence-based foundation for the proposed forecasting model, enhancing the scientific 

integrity and relevance of the review. 

 

2.1 Literature Review 

Effective fault diagnosis is crucial in industrial systems to ensure reliability, minimize downtime, and prevent 

catastrophic failures. In offshore and subsea environments, where human intervention is limited and 

conditions are harsh, robust fault detection and prediction mechanisms are essential (ADEWOYIN et al., 2021; 

Onyeke et al., 2022). This outlines the progression from traditional fault diagnosis methods to modern 

machine learning approaches, particularly in subsea applications, and highlights key research gaps that 

remain unresolved. 

Historically, industrial fault diagnosis has relied heavily on traditional approaches such as rule-based systems, 

model-based diagnostics, and threshold alarms. Rule-based systems use expert knowledge encoded as logical 
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rules to identify abnormal conditions. These systems are relatively straightforward to implement and 

interpret but often lack adaptability and scalability in complex environments. Model-based diagnostics, on 

the other hand, involve creating mathematical models of system behavior and comparing real-time data to 

model outputs to detect discrepancies. These methods can be accurate but require precise modeling, which is 

difficult in dynamic and poorly understood environments like the subsea. Threshold alarms are perhaps the 

most widely used technique, involving the setting of predetermined limits on sensor readings, with alarms 

triggered when values exceed acceptable ranges (Okolo et al., 2021; Ojika et al., 2021). While simple and 

computationally efficient, threshold-based methods are prone to false positives and negatives, especially 

under varying operational conditions. 

In recent years, machine learning (ML) has emerged as a powerful alternative for fault detection in industrial 

systems, providing tools to analyze vast and complex datasets beyond human capability. ML methods are 

broadly classified into supervised and unsupervised learning. Supervised learning involves training models on 

labeled datasets, where fault conditions are known. Algorithms like support vector machines (SVM), decision 

trees, and deep neural networks have shown high accuracy in fault classification tasks. For example, in 

offshore oil and gas platforms, supervised ML has been used to detect bearing failures and valve anomalies 

using vibration and acoustic data. 

Unsupervised learning, by contrast, does not require labeled data and is particularly useful when fault 

patterns are not well defined. Clustering algorithms (e.g., k-means) and dimensionality reduction techniques 

(e.g., principal component analysis, PCA) have been applied to detect anomalies by identifying deviations 

from normal operating conditions. In subsea contexts, where labeled failure data is scarce, unsupervised 

learning is especially promising (Daraojimba et al., 2021; Orieno et al., 2021). 

Several case studies highlight the successful deployment of ML in offshore and subsea applications. A study 

by Gao et al. (2019) demonstrated the use of convolutional neural networks (CNNs) for detecting corrosion in 

subsea pipelines from remotely operated vehicle (ROV) images. Another study by Li et al. (2021) used long 

short-term memory (LSTM) networks to predict failures in subsea control modules based on time-series 

sensor data. These applications illustrate the growing potential of ML techniques to outperform traditional 

methods, particularly in complex, data-rich environments. 

Despite advancements, significant gaps persist in current research, especially concerning the application of 

ML in subsea fault diagnosis. One of the major challenges is the lack of robust forecasting models tailored to 

harsh, data-scarce environments. Subsea systems operate under extreme pressures and corrosive conditions, 

often with limited sensor coverage and intermittent data transmission (Onaghinor et al., 2021; Mustapha et al., 

2021). Most ML models require large amounts of clean, labeled data for training—something not readily 

available in subsea settings. 

Moreover, existing models often fail to generalize across different equipment types or operational scenarios 

due to their dependency on specific training datasets (Lwakatare et al., 2020; Filz et al., 2021). There is a need 

for hybrid approaches that combine physics-based modeling with data-driven techniques to improve 

reliability under varying conditions. Transfer learning and few-shot learning also offer promising directions, 

enabling models to learn from limited data. 
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While machine learning has significantly enhanced fault detection in industrial systems, its application in 

subsea environments remains constrained by data limitations and operational complexity. Future research 

must focus on developing adaptive, interpretable, and data-efficient models capable of robust performance 

under the unique challenges of the subsea domain (Adewoyin, 2021; Dienagha et al., 2021). 

2.2 System Architecture and Data Collection 

Subsea production systems consist of various interconnected equipment that perform critical functions for the 

extraction, processing, and transportation of hydrocarbons on the ocean floor. Among the most essential 

components are subsea pumps, compressors, and valves, each playing a distinct role in managing fluid flow, 

pressure regulation, and chemical injection as shown in figure 1(Chudi et al., 2021; Awe, 2021). Subsea pumps 

and compressors are responsible for boosting reservoir fluids to the surface, often under extremely high-

pressure differentials. Valves, on the other hand, regulate flow paths within subsea manifolds and control 

modules, directing the production stream or isolating sections for maintenance and safety. 

To ensure operational reliability, these components are continuously monitored using an array of embedded 

sensors. Typical sensor types include pressure sensors, temperature sensors, vibration sensors, flow meters, 

and acoustic sensors. These sensors are installed directly on equipment or along flowlines and umbilicals. 

Data acquisition is accomplished through subsea control modules, which transmit collected data via fiber-

optic or electrical communication lines to topside control centers or cloud-based storage systems (Okolo et al., 

2022; Nwulu et al., 2022). This remote monitoring infrastructure allows real-time data visualization and 

storage for analytical applications. 

 
Figure 1: Sensor types and data acquisition methods 

 

The performance monitoring and fault prediction of subsea equipment rely heavily on a combination of data 

sources, which fall into three major categories; Time-series sensor data, This is the most critical input for 

predictive analytics. It includes continuous readings of physical variables such as pressure, temperature, 
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vibration, and flow rate. These data streams are timestamped and offer high-resolution insights into the 

dynamic operational state of the equipment. Maintenance logs, These logs contain detailed historical records 

of inspections, repairs, and component replacements. Such logs are invaluable for correlating observed faults 

with sensor anomalies, helping to label past events and train predictive models. Operational condition data, 

This encompasses information about production rates, wellhead pressures, chemical injection rates, and 

ambient environmental conditions such as seawater temperature and pressure. These data provide context 

and help interpret sensor readings under varying production scenarios (Ogunwole et al., 2022; Esan et al., 

2022). Together, these datasets form the basis for machine learning model training, validation, and 

deployment. They enable the identification of precursors to faults and support the development of fault 

classification and regression models for forecasting failure timelines. 

Despite the availability of rich datasets, working with subsea operational data presents several challenges that 

must be addressed for accurate and reliable fault prediction. Noise and signal interference, Due to the 

complexity of the underwater environment, sensor signals are often corrupted by mechanical vibrations, 

electromagnetic interference, or water turbulence (Sun et al., 2019; Awan et al., 2019; Eleftherakis et al., 

2020). This noise can obscure early fault signatures, requiring robust filtering and signal processing 

techniques to extract meaningful patterns. Missing values, data gaps frequently occur due to sensor 

malfunction, communication loss, or power disruptions. These gaps reduce the continuity and integrity of the 

time-series data and must be imputed or managed using sophisticated data preprocessing techniques such as 

interpolation, Kalman filtering, or model-based imputation. Data imbalance, fault events are relatively rare 

compared to normal operation data, leading to severe class imbalance in labeled datasets (Ojika et al., 2022; 

Uzozie et al., 2022). This imbalance can bias machine learning models toward the majority class, reducing 

sensitivity to actual failure precursors. Methods such as resampling, anomaly detection, or cost-sensitive 

learning are necessary to address this issue. Harsh-environment-induced anomalies, unpredictable subsea 

events such as hydrate formation, rapid pressure surges, or corrosion-related blockages can introduce atypical 

data points that do not represent typical fault patterns. Differentiating between transient anomalies and true 

degradation signatures is a significant challenge requiring domain knowledge and adaptive modeling 

techniques (Ojika et al., 2022; Uzozie et al., 2022). 

A well-structured system architecture that integrates robust sensor networks, diversified data sources, and 

advanced preprocessing algorithms is crucial for effective fault forecasting in subsea equipment. Addressing 

the inherent challenges in data quality and representation is foundational to the success of machine learning-

based predictive maintenance strategies in harsh offshore environments (Zhang et al., 2019; Boppiniti, 2020; 

Escobar et al., 2021). 

 

2.3 Machine Learning Model Development 

The advancement of machine learning (ML) has transformed industrial fault detection, particularly in 

domains like manufacturing, energy, and offshore systems. Successful ML applications rely on a systematic 

development process, which includes data preprocessing, feature engineering, model selection, and rigorous 

model training and validation as shown in figure 2(Onaghinor et al., 2022; Ogunwole et al., 2022). These steps 

ensure that the resulting models are accurate, robust, and capable of performing under real-world constraints. 
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Figure 2: Machine Learning Model Development 

Data preprocessing is the foundation of any successful ML pipeline. In industrial environments, sensor data is 

often noisy, incomplete, or inconsistent due to environmental disturbances, equipment wear, or transmission 

errors. Therefore, data cleaning is critical and may involve removing outliers, smoothing fluctuations, or 

filtering noise using techniques like moving averages or wavelet transforms. 

Normalization is another essential step, particularly when using algorithms that are sensitive to feature scale 

(e.g., neural networks). Techniques such as min-max scaling or z-score normalization are commonly applied 

to ensure that each feature contributes equally during model training (Adedokun et al., 2022; Komi et al., 

2022). 

Handling missing data is also vital, as industrial systems may experience data loss due to hardware failure or 

transmission gaps. Strategies for dealing with missing values include deletion (if data loss is minimal), 

statistical imputation (e.g., mean or median), or advanced methods like k-nearest neighbors (KNN) or 

iterative imputation. 

Feature extraction converts raw data into informative representations that highlight relevant signal 

characteristics. In time-series applications, this can involve statistical metrics (e.g., RMS, skewness), 

frequency-domain transformations (e.g., FFT), or time-frequency analysis (e.g., wavelet transforms), 

depending on the fault type and system dynamics. 

Feature engineering is a critical step that enhances model accuracy by creating inputs that reflect the system’s 

underlying physical behavior. Domain-specific features incorporate expert knowledge into the model, such as 

vibration frequencies for rotating machinery or temperature gradients in subsea control systems (Ubamadu et 

al., 2022; Onyeke et al., 2022). 

Statistical features, including mean, variance, kurtosis, and entropy, help capture deviations from normal 

operation and are widely used in traditional ML approaches. These features provide compact yet informative 

descriptions of the system’s health state. 
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Temporal patterns are particularly important in dynamic systems where fault progression occurs over time. 

Lag features, rolling statistics, and autocorrelation measures can capture such dependencies. In deep learning 

models, raw time-series inputs may also be used directly to preserve temporal integrity, especially when 

applying recurrent neural networks like LSTM. 

Selecting the right model depends on the nature of the data, fault types, and desired level of interpretability. 

Random Forest (RF) is a widely used ensemble method known for its robustness and ability to handle non-

linear relationships. It is especially suitable for smaller datasets and provides interpretable results via feature 

importance scores (Achumie et al., 2022; Onyeke et al., 2022). 

XGBoost is an efficient gradient boosting algorithm that outperforms RF in many cases, particularly with 

large and complex datasets. Its strength lies in iterative tree-building and regularization, which help minimize 

overfitting. 

For time-dependent data, Long Short-Term Memory (LSTM) networks are highly effective. LSTM can learn 

long-range dependencies and patterns in sensor signals, making them ideal for predicting fault trends. 

Convolutional Neural Networks (CNNs) are suitable for identifying spatial or localized patterns and have 

been adapted for time-series data by treating temporal signals as images. 

Hybrid models, such as CNN-LSTM or ensemble combinations of RF with deep learning models, leverage the 

strengths of different architectures (Nwulu et al., 2022; Elete et al., 2022). These are particularly useful in 

complex industrial systems where both temporal dynamics and spatial patterns are present. 

Once the model is selected, it must be trained on historical data that captures both normal and faulty 

conditions. This training process involves dividing the dataset into training, validation, and test sets. Cross-

validation, especially k-fold cross-validation, is commonly used to assess generalization and reduce the risk of 

overfitting. 

Hyperparameter tuning is crucial for optimizing model performance. Techniques like grid search, random 

search, or Bayesian optimization are used to adjust parameters such as learning rate, number of trees, or 

neural network architecture (e.g., number of layers or neurons). 

The development of ML models for industrial fault detection requires an integrated approach involving data 

cleaning, intelligent feature engineering, careful model selection, and rigorous training and validation. When 

these elements are properly implemented, ML models can provide reliable and scalable solutions for 

predictive maintenance, especially in complex and high-risk environments (Nwulu et al., 2022; Elete et al., 

2022). 

2.4 Fault Forecasting Framework 

In the context of fault prediction for subsea process equipment, the selection of a robust and reliable machine 

learning model is critical. Given the sequential nature of sensor data and the temporal dependencies in 

equipment behavior, Long Short-Term Memory (LSTM) networks have been chosen as the core of the 

forecasting framework. LSTM is a specialized type of recurrent neural network (RNN) capable of learning 

long-range temporal dependencies, which makes it well-suited for time-series analysis in industrial 

applications as shown in figure 3. Unlike traditional feedforward neural networks, LSTM networks utilize 

memory cells and gating mechanisms (input, output, and forget gates) to retain relevant information over 

long time sequences and filter out irrelevant data (Nwulu et al., 2022; Ajiga et al., 2022). 
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Figure 3 : Fault Forecasting Framework 

The proposed model architecture consists of stacked LSTM layers followed by fully connected dense layers. 

The input to the model is a sliding window of time-series sensor data, including variables such as pressure, 

temperature, vibration, and flow rate. These features are normalized and optionally augmented with derived 

features such as moving averages, trends, or frequency-domain components obtained via Fourier Transform. 

The output layer varies depending on whether the task is formulated as a classification or regression problem. 

For classification, the output is a softmax-activated vector representing fault categories, while for regression, 

it outputs a continuous fault probability or time-to-failure estimate. 

The fault forecasting framework can adopt either a classification or regression approach, depending on the 

specific maintenance objective; Classification, this approach is used when the goal is to predict whether a 

fault will occur within a predefined future window (e.g., the next 24 or 72 hours). It converts the problem 

into a binary or multi-class task where each class represents a type or severity of fault. This is particularly 

useful for triggering alarms and initiating preventive actions. Regression, this approach aims to predict a 

continuous variable, such as the remaining useful life (RUL) of a component or the time until the next failure 

event. Regression-based models are beneficial when precise planning of maintenance operations is required, 

as they provide more granular forecasting insights (Akintobi et al., 2022; Adeniji et al., 2022). 

Additionally, the model can be tuned for short-term or long-term prediction horizons. Short-term predictions 

(e.g., within a few hours) are more accurate and typically sufficient for operational adjustments, while long-

term predictions (e.g., several days or weeks) are essential for scheduling maintenance and resource allocation. 

However, longer horizons often come with increased uncertainty, necessitating the integration of confidence 

intervals or uncertainty quantification techniques. 

 

To evaluate the effectiveness of the fault forecasting model, a set of well-defined performance metrics is 

essential; Accuracy, measures the proportion of total correct predictions (both faults and non-faults). While 
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useful, accuracy alone may be misleading in imbalanced datasets. Precision, indicates the proportion of true 

positives among all predicted positives, reflecting how many predicted faults are actually faults. High 

precision is important to avoid false alarms. Recall (Sensitivity), measures the proportion of actual faults that 

are correctly predicted. A high recall ensures that most fault events are detected, critical for safety-critical 

operations. F1-Score, the harmonic mean of precision and recall. It provides a balanced measure, especially 

valuable in datasets where both false positives and false negatives have high costs. ROC-AUC (Receiver 

Operating Characteristic – Area Under Curve), provides an aggregate measure of model performance across 

different threshold settings (Sobowale et al., 2022; Akintobi et al., 2022). It is especially useful for binary 

classification problems under class imbalance. RMSE (Root Mean Square Error), used primarily in regression 

tasks to quantify the average prediction error. Lower RMSE values indicate higher model accuracy in 

forecasting continuous values such as RUL. By integrating LSTM networks with appropriate forecasting 

strategies and performance evaluation methods, the proposed fault forecasting framework offers a robust 

solution for enhancing predictive maintenance in subsea environments. The framework balances the need for 

accuracy and interpretability, supporting real-time decision-making and improving operational resilience. 

2.5 Discussion 

The application of machine learning (ML) in fault diagnosis and forecasting, particularly in challenging 

environments such as subsea and offshore industrial systems, represents a significant advancement in 

condition monitoring. This discussion highlights key findings from recent developments, outlines the 

limitations of current models, and explores their practical implications for real-world deployment. 

One of the primary findings in the development and evaluation of ML models for fault forecasting is their 

strong capability to detect and predict failures under harsh and dynamic conditions. Compared to traditional 

fault diagnosis techniques, such as rule-based systems and threshold alarms, ML models offer higher 

adaptability and accuracy by learning complex, non-linear relationships in the data (Adewoyin, 2022; 

Onukwulu et al., 2022). 

Models such as Long Short-Term Memory (LSTM) networks and Convolutional Neural Networks (CNNs) 

have shown particular strength in capturing temporal and spatial patterns, respectively. LSTMs excel in 

processing time-series data typical of industrial sensors, allowing them to forecast faults before they occur by 

recognizing trends and anomalies that precede failures. CNNs, when applied to transformed sensor data (e.g., 

spectrograms or vibration signatures), effectively identify localized patterns associated with specific fault 

types. 

Furthermore, ensemble methods like Random Forest and XGBoost demonstrated robustness in environments 

with noisy or partially missing data, which is common in subsea monitoring systems. These models provide a 

balance between performance and interpretability, making them suitable for real-time monitoring 

applications. Overall, ML-based models outperform conventional approaches in fault detection accuracy, 

responsiveness, and scalability in varying operational contexts (Ogunnowo et al., 2022; Okolo et al., 2022). 

Despite their advantages, ML models come with limitations that must be addressed before large-scale 

deployment. A major constraint is data dependency. Most ML algorithms require large, labeled datasets for 

training, which can be challenging to obtain in subsea environments due to sensor sparsity, intermittent 
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connectivity, and limited failure occurrences. This data scarcity can lead to biased models with poor 

generalization to unseen conditions. 

Another limitation is model interpretability. Deep learning models, especially CNNs and LSTMs, often act as 

"black boxes," offering little insight into how predictions are made. This opacity can hinder trust and 

acceptance among engineers and operators, particularly in safety-critical applications where understanding 

the basis of a decision is crucial (Skraaning et al., 2020; Bonnefon et al., 2020; Burton et al., 2020). 

Scalability is also a concern. While ML models can perform well on small-scale or simulated datasets, their 

computational and storage demands may become prohibitive when scaling to large, distributed monitoring 

networks. Additionally, frequent model retraining and updates are often needed to maintain performance as 

systems evolve, posing further operational challenges. 

For ML-based fault forecasting to be viable in industrial applications, it must be seamlessly integrated into 

existing monitoring infrastructures. This integration involves linking the models with real-time data 

acquisition systems, supervisory control and data acquisition (SCADA) platforms, and maintenance planning 

tools. Fortunately, many modern industrial systems are already digitized, offering a pathway for ML 

deployment through edge computing or cloud-based platforms. 

From a cost-benefit perspective, while the initial development and deployment of ML systems may involve 

substantial investment in computational resources and data engineering, the long-term benefits can be 

substantial. Improved fault detection and predictive maintenance can significantly reduce unplanned 

downtime, extend equipment life, and enhance safety (Zhu et al., 2019; Lee et al., 2020). In the subsea sector, 

where maintenance operations are logistically complex and costly, even minor improvements in fault 

forecasting can lead to considerable savings. 

Moreover, the adoption of interpretable ML models, supported by visualization tools and human-in-the-loop 

systems, can help bridge the gap between automation and operator expertise. This hybrid approach may 

enhance trust in automated diagnostics and facilitate more informed maintenance decisions. 

The integration of machine learning in fault forecasting presents a transformative opportunity for industrial 

monitoring, particularly in subsea environments. While current models show promising results in predicting 

failures under challenging conditions, addressing limitations related to data, interpretability, and scalability 

remains essential. Practical implementation, guided by cost-benefit considerations and human oversight, will 

be critical to unlocking the full potential of ML in fault diagnosis systems (Chinamanagonda, 2021; Tanikonda 

et al., 2021). 

Conclusion  

This aimed to develop and validate a machine learning-based fault forecasting framework for subsea process 

equipment, addressing the critical challenge of early fault detection in offshore oil and gas operations. The 

methodology centered on the use of Long Short-Term Memory (LSTM) networks to analyze time-series 

sensor data, maintenance logs, and operational conditions. The model architecture was designed to capture 

temporal dependencies in subsea equipment behavior, facilitating both classification and regression-based 

forecasting approaches. Performance was evaluated using key metrics such as accuracy, precision, recall, F1-

score, ROC-AUC, and RMSE, demonstrating the model’s capability to predict faults with high reliability 

across varying time horizons. 
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The proposed framework introduces a novel application of deep learning in the domain of subsea predictive 

maintenance, particularly under challenging environmental conditions marked by high pressure, low 

temperature, and data scarcity. The use of LSTM networks for sequential fault prediction in subsea equipment 

represents a significant advancement over traditional threshold-based monitoring systems. The model’s 

ability to process complex, multivariate data and detect precursors to failure offers a valuable tool for 

improving operational safety, minimizing downtime, and reducing maintenance costs. 

 

Future research will explore the integration of transfer learning to adapt the forecasting model to different 

subsea assets or fields with limited historical data. Additionally, combining the model with digital twin 

technologies could enhance simulation capabilities, allowing real-time virtual monitoring and scenario testing. 

The ultimate goal is to enable real-time deployment of the forecasting system within offshore control 

environments, where it can continuously process live sensor data, deliver actionable insights, and support 

automated decision-making in subsea asset management. This will further enhance the reliability and 

sustainability of offshore production systems. 
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