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ABSTRACT 

 

The purpose in this paper is to determine the finiteness properties of 

the homomorphism C(𝑌) →  C(𝑋) (i.e., whether it is finite, integral, 

singly generated or finitely generated) in terms of the properties of 

the map X →   Y. 
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Introduction 

 

We shall see the, in order to study finiteness properties between the associated rings of continuous 

functions, the problem for compactifications is equivalent to the problem for arbitrary compact 

Hausdorff spaces. The main result of the paper says that, for X and Y compact Hausdorff spaces, the 

homomorphism C(𝑌) →  C(𝑋)  is finite (C(X) is finitely generated as C(Y)-module) if and only if the 

map X →   Y is locally injective. We show examples of finite but not singly generated, as well as 

integral but not finite, homomorphisms C(𝑌) →  C(𝑋). Every continuous map 𝑋 → 𝑌 defines, by 

composition, a homomorphism C(𝑌) →  C(𝑋) between the corresponding algebras of real-valued 

continuous functions. This paper is devoted to the study of the finiteness properties of this 

homomorphism. Our starting point is the well-known result which states that every real compact 

space 𝑋 is determined by the algebra 𝐶(𝑋) of all real-valued continuous functions defined on it, and 

that continuous maps between their algebras of continuous functions. From this equivalence it 

follows that statements about topological properties of spaces and maps should have a natural 

translation in terms of algebraic properties of the corresponding algebras and homomorphisms. 

Finite spaces- In this section we study the simplest case of the problem: when the space Y is finite. 

First, we investigate the finiteness properties of C(X) as an ℝ-algebra, i.e., of the homomorphism 

ℝ =  C({p})→C(𝑋) given by a constant map X →  Y = {𝑝}. 

Proposition 1. The following conditions are equivalent for a completely regular (Hausdroff) space 𝑋: 

(1) 𝑋  is a finite space. 

(2) 𝐶(𝑋) is a finite ℝ-algebra. 



Gyanshauryam, International Scientific Refereed Research Journal  (www. gisrrj.com) | Volume 6 | Issue 1 

Dr. Rajesh Kumar Int S Ref Res J, January-February-2023, 6 (1) :  01-05 

 

 

 

 
2 

(3) 𝐶(𝑋) is an integral ℝ-algebra. 

(4) 𝐶(𝑋) is a singly generated ℝ-algebra. 

(5) 𝐶(𝑋) is a finitely generated ℝ-algebra. 

Proof. (1)  (2) If 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}, then C(X) = C({x1}) ⊕ … ⊕ C({𝑥𝑛}) = ℝ ⊕ … ⊕ ℝ =  ℝ𝑛. 

(2)  (3) Every finite ring homomorphism is integral. 

(3)  (1) If every function 𝑓 C(X) is a root of a polynomial with real coefficients, then 𝑓 (X) is 

finite, and then so os X, because in an infinite completely regular space we can always define a real 

continuous function with infinite range. 

(1)  (4) We shall see that C(X) = ℝ[ 𝑓 ], for any function 𝑓  that separates points in 𝑋 =

{𝑥1, 𝑥2, … , 𝑥𝑛}. Set 
𝑖

= 𝑓(𝑥𝑖), and take 

𝑓𝑖 =  
 𝑖≠𝑗(𝑓−

𝑗
)

 𝑖≠𝑗(
𝑖
 −

𝑗
)
,      for 1 ≤ 𝑖 ≤ 𝑛 . 

Certainly𝑓𝑖ℝ[𝑓]. Moreover, 𝑓𝑖(𝑥𝑖) = 1 and 𝑓𝑖(𝑥𝑗) = 0 for  ≠ 𝑗 . Finally observe that, for any 𝙜 

 C(𝑋), 𝙜 =  ∑ 𝙜(𝒙𝒊)
𝒏
𝒊=𝟏 𝒇𝒊 ℝ[𝑓]. 

(4)  (5) this follows from the definitions. 

(5)  (1) The number of minimal prime ideals of a finitely generated ℝ-algebra is finite (because it is 

a noetherian ring). In 𝐶(𝑋) each prime ideal is contained in a unique maximal ideal. Hence, if 𝐶(𝑋) 

is a finitely generated ℝ-algebra, then it has only finitely many maximal ideals, and so the space X is 

finite. 

Corollary 2. Let 𝜋: 𝑋 → 𝑌 be a continuous map between compact Hausdorff spaces. If the induced 

homomorphism C(𝑌) →  C(𝑋) is finite (integral, singly generated or finitely generated), then each 

fibre 𝜋−1(𝑦) is a finite set. 

Proof. By Tietze’s extension theorem, 𝐶(𝜋−1(𝑦)) is a quotient ring of 𝐶(𝑋). This implies that if 

C(𝑌) →  C(𝑋)  is finite (integral, singly generated, finitely generated), then so is ℝ = C(𝑦) →

𝐶(𝜋−1(𝑦)). 

Corollary 3.  Let Y be a finite space, and 𝜋: 𝑋 → 𝑌 be a continuous map. The following cinditions are 

equivalent: 

(1) 𝑋  is a finite space. 

(2) C(𝑌) →  C(𝑋) is a finite. 

(3) C(𝑌) →  C(𝑋) is an integral. 

(4) C(𝑌) →  C(𝑋) is a singly generated. 

(5) C(𝑌) →  C(𝑋) is a finitely generated. 

Proof. (1)  (2), (1)  (3), (1)  (4) and (1)  (5) If 𝐶(𝑋) is a finite )integral, singly generated or 

finitely generated) ℝ-algebra, then it has the same property as 𝐶(𝑌)-algebra 
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The converse follows directly from 2. 

Finite homomorphisms 

Proposition 1. Let 𝜋: 𝑋 → 𝑌  be a continuous map between real-compact spaces. If the 

homomorphisms C(𝑌) →  C(𝑋) is finite, hten the continuous extension of  𝜋  to the Stone- Cech 

compactifications, 𝛽𝜋 ∶  𝛽𝑋 → 𝛽𝑌, is a locally injective map. 

Theorem 2. Let 𝜋: 𝑋 → 𝑌  be a continuous map between compact Hausdroff spaces. The 

homomorphisms C(𝑌) →  C(𝑋) is finite if and only if the map 𝜋: 𝑋 → 𝑌 is locally injective. 

Proof. Suppose that 𝜋: 𝑋 → 𝑌 is locally injective. Every point 𝑥 ∈ 𝑋 has a co-zero neighbourhood U 

such that 𝜋 is injective on 𝑈, the closure of U. Then 𝐶(𝑈) ≃ 𝐶 (𝜋(𝑈)) and, by Tirtze’s extension 

theorem, the homomorphisms 𝐶(𝑌) → 𝐶 (𝜋(𝑈)) ≃ 𝐶(𝑈) is subjective. 

The space X can be covered b a finite number of these co-zero sets, 𝑋 = 𝑐𝑜𝑧(𝑔1) ∪∙∙∙∪ 𝑐𝑜𝑧(𝑔𝑛). 

Since 𝑐𝑜𝑧(𝑔𝑖) = 𝑐𝑜𝑧(𝑔𝑖
2), we can take 𝑔𝑖 ≥ 0, ∀𝑖. The functions ℎ𝑖 = 𝑔𝑖/(𝑔1 + ⋯ + 𝑔𝑛), 𝑖 = 1, … , 𝑛, 

generated 𝐶(𝑋) as a 𝐶(𝑌)-module: for every 𝑓 ∈ 𝐶(𝑋), there exist functions 𝑓1, ⋯ , 𝑓𝑛𝜖𝐶(𝑌) such that 

𝑓 = 𝑓𝑖 in 𝑐𝑜𝑧(𝑔𝑖), i.e., 𝑔𝑖 ∙ 𝑓 = 𝑓𝑖 ∙ 𝑔𝑖, so (∑ 𝑔𝑖)𝑓 = 𝑓1 ∙ 𝑔1 + ⋯ + 𝑓𝑛 ∙ 𝑔𝑛 and 𝑓 = 𝑓1 ∙ ℎ1 + ⋯ 𝑓𝑛 ∙ ℎ𝑛. 

Proposition 3. Let 𝜋: 𝑋 → 𝑌  be a continuous map between real-compact spaces. If the 

homomorphisms C(𝑌) →  C(𝑋) is finite, then 𝜋 is a closed map and the space X can be covered by a 

finite number of co-zero sets, 𝑋 = 𝑐𝑜𝑧(𝑔1) ∪ ⋯ ∪ 𝑐𝑜𝑧(𝑔𝑛), such that 𝜋 is injective on each closure 

𝑐𝑜𝑧(𝑔𝑖). Consequently, |𝜋−1(𝑦)| ≤ 𝑛 ∀ 𝑦 ∈ 𝑌. 

Proof. Assume that the homomorphisms 𝜙 ∶ 𝐶(𝑌)  → 𝐶(𝑋) (𝜙(𝑓) = 𝑓 ∘ 𝜋) is finite. According to 1, 

the map 𝛽𝜋 ∶ 𝛽𝑋 → 𝛽𝑌 is locally injective, so that 𝛽𝑋 may be covered by a finite number of co-zero 

dets such that 𝛽𝜋 is injective on each closure, and obiously the same happens for X and 𝜋. 

Next we shall prove that 𝜋 is a closed map. Frist of all, take into account that 𝛽𝜋 ∶ 𝛽𝑋 → 𝛽𝑌 is closed 

map. If we show that 𝛽𝜋 transforms 𝛽𝑋 − 𝑋 into 𝛽𝑌 − 𝑌, then 𝑋 = 𝛽𝜋−1(𝑌), and so 𝜋 = 𝛽𝜋|𝑋 ∶ 𝑋 →

𝑌is also a closed map. 

In order to prove that 𝛽𝜋 carries 𝛽𝑋 − 𝑋 into 𝛽𝑌 − 𝑌, we are going to describe the space 𝛽𝑋 and the 

map 𝛽𝜋 in erms of prime ideals in 𝐶(𝑋). 

Let Spec 𝐶(𝑋) be the prime spectrum of the ring 𝐶(𝑋), that is, the set of prime ideals in 𝐶(𝑋) 

endowed with the Zariski (or hull-kernel) topology. Recall that the subspace Max 𝐶(𝑋) of Spec 𝐶(𝑋) 

consisting of all maximal ideals in 𝐶(𝑋) is just 𝛽𝑋. 

Each prime ideal in 𝐶(𝑋) is contained in an unique maximal ideal and the map 𝑟𝑋 ∶ Spec 𝐶(𝑋) → 

Max 𝐶(𝑋) that sends each prime ideal in 𝐶(𝑋) to the unique maximal ideal in 𝐶(𝑋) containing it, is 

a continuous retraction. 

The map between the prime spectra Spec 𝐶(𝑋) → Spec 𝐶(𝑌) that sends each prime ideal P in 𝐶(𝑋) 

to the prime ideal 𝜙−1(𝑃) = {𝑓 ∈ 𝐶(𝑌) ∶  𝑓 ∘ 𝜋 ∈ 𝑃} is also a continuous map. The restriction of this 

map to 𝛽𝑋, is just 𝛽𝜋: 𝛽𝑋 → 𝛽𝑌. 
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Given a point𝑝 ∈ 𝛽𝑋, let 𝑀𝑝 be the corresponding maximal ideal in 𝐶(𝑋) According to the above 

description of 𝛽𝜋 , the maximal ideal in 𝐶(𝑌)  corresponding to the point 𝑞 = 𝛽𝜋(𝑝)  is just 

𝑟𝑌(𝜙−1(𝑀𝑝)) , that is, 𝑀𝑞 = 𝑟𝑌(𝜙−1(𝑀𝑝)) . As the homomorphism 𝜙 ∶ 𝐶(𝑌) → 𝐶(𝑋)  is finite, 

𝜙−1(𝑀𝑝) is a maximal ideal in 𝐶(𝑌), and so 𝑀𝑞 =  𝑟𝑌 (𝜙−1(𝑀𝑝)) = 𝜙−1(𝑀𝑝). The homomorphism 

induced by 𝜙  between the quotient fields 𝐶(𝑌) 𝑀𝑞⁄ → 𝐶(𝑋) 𝑀𝑝⁄  is injective and also finite. 

Therefore, 𝐶(𝑋) 𝑀𝑝⁄  is an algebraic extension of 𝐶(𝑌) 𝑀𝑞⁄ . Moreover, the field 𝐶(𝑋) 𝑀𝑝⁄  is totally 

ordered and 𝐶(𝑌) 𝑀𝑞⁄  is real-closed, that is to say, it has no proper algebraic extensions to an 

ordered field. Hence, the homomorphism 𝐶(𝑌) 𝑀𝑄⁄ → 𝐶(𝑋) 𝑀𝑝⁄  is an isomorphism. This implies 

that 𝐶(𝑌) 𝑀𝑞 = ℝ⁄  or, equivalently, 𝑞 ∈ 𝑌 if and only if 𝐶(𝑋) 𝑀𝑝⁄ = ℝ, i.e., 𝑝 ∈ 𝑋. 

The converse of this result is true for normal spaces Y. 

Theorem 4. Let 𝜋: 𝑋 → 𝑌 be a continuous map between realcompact spaces and suppose that Y is a 

normal space. The homomorphism 𝐶(𝑌) → 𝐶(𝑋) is finite if and only if 𝜋 is a closed map and the 

space X can be covered by a finite number of co-zero sets, 𝑋 = 𝑐𝑜𝑧(𝑔1) ∪ ⋯ ∪ 𝑐𝑜𝑧(𝑔𝑛), such that 𝜋 

is injective on each closure 𝑐𝑜𝑧(𝑔𝑖). 

Proof. The proof is entirely analogous to 2. 

The following example shows that the converse of 1 is not true, and that Theorem 2 does not hold 

for non-compact spaces. 

Example. A continuous injective map 𝜋: 𝑋 → 𝑌 such that 𝛽𝜋 ∶ 𝛽𝑋 → 𝛽𝑌 is a homomorphism and the 

homomorphism C(𝑌) →  C(𝑋) is not finite. 

Let ∑ = ℕ ∪ {𝑝}, where 𝑝 ∈ 𝛽ℕ − ℕ. Σ is a realcompact and normal space, and ℕ is dense and 𝐶∗-

embedded in Σ. Therefore, 𝛽ℕ = 𝛽Σ. The homomorphism 𝐶(Σ) → 𝐶(ℕ) induced by the inclusion 

map ℕ → Σ is nit finite, because ℕ is not closed in Σ. 

A class of locally injective continuous maps of especial interest consists of unbranched coverings, 

classically studied in connection with the fundamental group. Unbranched finite covering (locally 

injective, open and closed continuous maps with finite fibres) and branched finite coverings (open 

and closed continuous maps with finite fibres) are characterized in terms of rings of continuous 

functions: A continuous map between topological manifolds 𝜋 ∶ 𝑋 → 𝑌  is an unbranched finite 

covering (respectively, a branched finite covering) if and only if the induced homomorphism 

𝐶(𝑌) → 𝐶(𝑋) is finite and flat (respectively, integral and flat). 

We have as yet obtained no analogues of Theorem 2 or 4 for integral, singly generated or finitely 

generated homomorphisms. However, we do have some partial results. In a paper in preparation, we 

prove that if the homomorphism 𝐶(𝑌) → 𝐶(𝑋) induced be a continuous map 𝜋: 𝑋 → 𝑌, between 

compact Hausdroff spaces, is singly generated, then it is finite, and consequently the map 𝜋 is locally 

injective. The converse of this result is not true. 

 



Gyanshauryam, International Scientific Refereed Research Journal  (www. gisrrj.com) | Volume 6 | Issue 1 

Dr. Rajesh Kumar Int S Ref Res J, January-February-2023, 6 (1) :  01-05 

 

 

 

 
5 

References 

 

1. R.Engelking, General Topology, Heldermann, Berlin, 1989. 

2. K.D. Magill Jr, A note on compactifications, Math. Z. 94 (1966). Page No. 322-325. 

3. L. Gillman, M. Jersion, Rings of Continuous Functions, Springer, New York, 1978. 

4. R.E. Chandler, Hausdroff conpactifications, Marcel Dekker, New York, 1976. 


