Polymer Translocation through a Nanopore under a Pulling Force - A 3D Langevin Dynamics Simulation Study

Authors(1) :-Fikre Jida

Employing, the Langevin dynamics simulations study method, we investigate the dynamics of linear chain polymers’ translocation into and out of a three-dimensional spherical cavity through a nanopore under a pulling force F .For the polymer translocations into the cavity, we observe different factors that influence on polymer translocation dynamics through a nanopore under a pulling force in Langevin dynamics simulations. Our focus on the influence of the chain length defined as N = Rg/R , Rgis the radius of gyration to the polymer and R is the cavity’s radius, thermostat Langevin temperature T , the cavity pore size η and the pulling force F on the average translocation time,. Thus, we obtain that the distribution of τ for the different chain lengths, it is symmetric and narrow for strong F .We also assure that τ N 2 and translocation velocity v N 1 for both moderate and strong F . Relatively for wide pore, three regimes are observed for τ as a function of F. τ is independent of F for weak F and lastly crosses over to τ F1 for strong force even for a moderate force. Finally, the waiting time, for monomer n and monomer n+ 1 to exit the pore, has a maximum for n close to the end of the chain, in contrast to the case where the polymer is driven by an external force within the pore. We also here present a computer simulation study of polymer translocation out of the cavity in a situation where the chain is initially confined to a closed spherical cavity in order to reduce the impact of conformational diversity on the translocation times. In particular, we investigate how the coefficient of variation of the distribution of translocation times can be minimized by optimizing both the volume and the aspect ratio of the cavity.

Authors and Affiliations

Fikre Jida
Department of Physics, Bule Hora University, Ethiopia

Langevin Dynamics, ESPRESSO, translocation, coarse-grained, bead, linear polymer, scaling behavior, distribution of translocation time, thermostat Langevin.

  1. Alberts, B.; Bray, D.; Lewis, J.; Raff, M.; Watson, J.D. Molecular Biology of the Cell; Garland: New York, NY,molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 1996, 93, 13770–13773. USA, 1994; p. 1361.
  2. A. Khorshid, P. Zimny, D. T´etreault-La Roche, G. Massarelli, T. Sakaue, and W. Reisner, Phys. Rev. Lett. 113,268104 (2014).
  3. SE. Werner, F. Persson, F. Westerlund, J. O. Tegenfeldt,and B. Mehlig, Phys. Rev. E 86, 041802 (2012).
  4. L. Dai, J. van der Maarel, and P. S. Doyle, Macromolecules 47, 2445 (2014).
  5. A. R. Klotz, L. Duong, M. Mamaev, H. W. de Haan,J. Z. Y. Chen, and W. W. Reisner, acromolecules
  6. J. J. Kasianowiczs, E. Brandin, D. Branton and D. W. Deaner, Proc. Natl. Acad. Sci. U.S.A. 93, 13770 (1996).
  7. L. Gammaitoni, F. Marchesoni, and S. Santucci, Phys.Rev.Lett.74,1052(1995).
  8. J. J. Kasianowicz, E. Brandin, D. Branton, and D. W. Deamer,Proc. Natl. Acad. Sci. U.S.A. 93, 13770 (1996).
  9. A. Meller, J. Phys.: Condens. Matter 15, R581 (2003).
  10. A. Meller, L. Nivon, and D. Branton, Phys. Rev. Lett.86, 3435 (2001).
  11. A. J. Storm, C. Storm, J. Chen, H. Zandbergen, J.- F. Joanny, and C. Dekker, “Fast DNA translocation through a solid-state nanopore,” Nano Letters, vol. 5,no.7,pp.1193–1197,2005.
  12. W. Sung and P. J. Park, Phys. Rev. Lett. 77, 783 (1996)
  13. M. Muthukumar, “Polymer translocation through a hole,” The Journal of Chemical Physics, vol. 111, no.22,pp.10371–10374,(1999).
  14. A. Meller, L. Nivon, E. Brandin, J. Golovchenko, and D. Branton, Proc. Natl. Acad. Sci. U.S.A. 97,1079 (2000).
  15. A. Meller, L. Nivon, and D. Branton, Phys. Rev. Lett. 86,3435 (2001).
  16. A. Meller and D. Branton, Electrophoresis 23, 2583 (2002.)
  17. A. J. Storm, C. Storm, J. Chen, H. Zandbergen, J. -F.Joanny and C. Dekker, Nano Lett. 5, 1193 (2005)
  18. K. Luo, I. Huopaniemi, T. Ala-Nissila, and S.-C. Ying, “Polymer translocation through a nanopore under an applied external field,” Journal of Chemical Physics, vol. 124, no. 11, Article ID 114704, 2006.
  19. I. Huopaniemi, K. Luo, T. Ala-Nissila, and S.- C. Ying, “Langevin dynamics simulations of polymer translocation through nanopores,” The Journal of Chemical Physics, vol. 125,no. 12,Article ID 124901,2006.
  20. C. Forrey and M. Muthukumar, “Langevin dynamics simulations of ds-DNA translocation through synthetic nanopores,” The Journal of Chemical Physics, vol. 127, no. 1, Article ID 015102,2007.
  21. K. Luo, T. Ala-Nissila, S.-C. Ying, and A. Bhattacharya, “Influence of polymer-pore interactions on translocation,” Physical Review Letters, vol. 99, no. 14,ArticleID148102,2007.
  22. K. Luo, T. Ala-Nissila, S.-C. Ying, and A. Bhattacharya, “Heteropolymer translocation through nanopores,” The Journal of Chemical Physics, vol. 126, no.14, Article ID145101,2007.
  23. K. Luo, T. Ala-Nissila, S.-C. Ying, and A. Bhattacharya, “Dynamics of DNA translocation through an attractive nanopore,”Physical Review E, vol. 78, no.6,ArticleID061911,2008.
  24. M. G. Gauthier and G. W. Slater, “A Monte Carlo algorithm to study polymer translocation through nanopores. II. Scaling laws,” The Journal of Chemical Physics, vol. 128, no. 20, Article ID 205103,2008.
  25. M. G. Gauthier and G. W. Slater, “Sequence effects on the forced translocation of heteropolymers through a small channel,” The Journal of Chemical Physics, vol. 128, no. 17, Article ID 175103,2008.
  26. A. Izmitli, D. C. Schwartz, M. D. Graham, and J. J. De Pablo,“The effect of hydrodynamic interactions on the dynamics of DNA translocation through pores,” The Journal of Chemical Physics, vol. 128, no. 8, Article ID 085102, 2008.
  27. J.-X. Chen, J.-X. Zhu, Y.-Q. Ma, and J.-S. Cao, “Translocation of a forced polymer chain through a crowded channel,” Euro physics Letters, vol. 106, no. 1, Article ID 18003, 2014.
  28. P. Jung and P. Hanggi, Phys. Rev. A 44, 8032 (1991a).
  29. Z.-H. You, J. Li, X. Gao et al., “Detecting proteinprotein interactions with a novel matrix-based protein sequence representation and support vector machines,” BioMed Research International, vol. 2015, Article ID 867516, 9 pages, 2015.
  30. Z. Yang, S. Li, L. Zhang, A. Ur Rehman, and H. Liang, “Translocation of -helix chains through a nanopore,” The Journal of Chemical Physics, vol. 133, no. 15, Article ID 154903, 2010.
  31. J. L. A. Dubbeldam, A. Milchev, V. G. Rostiashvili, and T. A. Vilgis, “Polymer translocation through a nanopore: a showcase ofanomalous diffusion,” Physical Review E, vol. 76, no. 1, Article ID 010801,2007.
  32. J. Chuang, Y. Kantor and M. Kardar, Phys. Rev. E 65,011802(2002).
  33. Y. Kantor and M. Kardar, Phys. Rev. E 69, 021806(2004).
  34. A. Milchev, K. Binder, and A. Bhattacharya, J. Chem.Phys.121,6042(2004).
  35. J. K. F. Luo, T. Ala-Nissila, and S. C. Ying, J. Chem. Phys.124, 034714 (2006).
  36. J. K. F. Luo, I. Huopaniemi, T. Ala-Nissila, and S. C. Ying,J. Chem. Phys. 124, 114704 (2006)
  37. D. Han, P. li, S. An, and P. Shi, “Multi-frequency weak signal detection based on wavelet transform and parameter compensation band-pass multistable stochastic resonance,” Mechanical Systems and Signal Processing, vol. 70-71, pp. 995–1010,2016.
  38. C. T. A. Wong and M. Muthukumar, “Polymer capture by electro-osmotic flow of oppositely charged nanopores,” The Journal of Chemical Physics, vol. 126, no. 16, Article ID 164903, 2007.
  39. A. Gopinathan and Y. W. Kim, “Polymer translocation in crowded environments,” Physical Review Letters, vol. 99, no. 22,Article ID 228106, 2007.
  40. Milchev, A. Single-polymer dynamics under constraints: Scaling theory and computer experiment. J. Phys.Condens.Matter 2011, 23, 1409–1413.
  41. Panja, D.; Barkema, G.T.; Kolomeisky, A.B. Through the eye of the needle: Recent advances in understanding biopolymer translocation. J. Phys. Condens Matter 2013, 25, 4977–4984.
  42. I. Huopaniemi, K. F. Luo, T. Ala-Nissila, and S. C. Ying,J. Chem. Phys. 125, 124901 (2006).
  43. Palyulin, V.V.; Ala-Nissila, T.; Metzler, R. Polymer translocation: The first two decades and the recent diversification. Soft Matter 2014, 10, 9016–9037.
  44. K. F. Luo, T. Ala-Nissila, S. C. Ying, and A. Bhattacharya, J. Chem. Phys. 126, 145101 (2007).
  45. Polson, J.M. Polymer translocation into and out of an ellipsoidal cavity. J. Chem. Phys. 2015, 142, 174903
  46. Kong, C.Y.; Muthukumar, M. Polymer translocation through a nanopore. II. Excluded volume effect.J. Chem. Phys. 2004, 120, 3460–3466.
  47. Cacciuto, A.; Luijten, E. Confinement-driven translocation of a flexible polymer. Phys. Rev. Lett. 2006, 96,238104.
  48. Ali, I.; Marenduzzo, D.; Yeomans, J. Polymer packaging and ejection in viral capsids: Shape matters.Phys. Rev. Lett. 2006, 96, 208102.
  49. Sakaue, T.; Yoshinaga, N. Dynamics of polymer decompression: Expansion, unfolding, and ejection.Phys.Rev.Lett. 2009,102,148302
  50. Matsuyama, A.; Yano, M.; Matsuda, A. Packagingejection phase transitions of a polymer chain: Theory and Monte Carlo simulation. J. Chem. Phys. 2009,131,3282–3285.
  51. Ali, I.; Marenduzzo, D. Influence of ions on genome packaging and ejection: A molecular dynamics study.J. Chem. Phys. 2011, 135, 10122–10127.
  52. Yang, S.; Neimark, A.V. Adsorption-driven translocation of polymer chain into nanopore. J. Chem. Phys.2012,136,121–125
  53. I. Huopaniemi, K. F. Luo, T. Ala-Nissila, and S. C. Ying,Phys. Rev. E 75, 061912 (2007).
  54. Rasmussen, C.J.; Vishnyakov, A.; Neimark, A.V. Translocation dynamics of freely jointed LennardJones chains into adsorbing pores.J. Chem. Phys. 2012,137,144903.
  55. Ghosal, S. Capstan friction model for DNA ejection from bacteriophages. Phys. Rev. Lett. 2012, 109, 6380–6383.
  56. T. Ambjornsson and R. Metzler, Phys. Biol. 1, 77(2004);T. Ambjornsson, M. A. Lomholt, and R. Metzler, J.Phys.: Condens. Matter 17, S3945 (2005); R. H. Ab-dolvahab, E. R. Ejtedadi, R. Metzler, Phys.Rev.E83,011902(2011).
  57. Zhang, K.H.; Luo, K.F. Dynamics of polymer translocation into a circular nanocontainer through a nanopore.J. Chem. Phys. 2012, 136, 185103.
  58. W. Yu and K. Luo, J. Am. Chem. Soc. 133, 13565 (2011).
  59. Al Lawati, A.; Ali, I.; Al Barwani, M. Effect of temperature and capsid tail on the packing and ejection of viral DNA. PLoS ONE 2013, 8, e52958
  60. Polson, J.M.; Hassanabad, M.F.; McCaffrey, A. Simulation study of the polymer translocation free energy barrier. J. Chem. Phys. 2013, 138, 244–251.
  61. Mahalik, J.; Hildebrandt, B.; Muthukumar, M. Langevin dynamics simulation of DNA ejection from a phage.J. Biol. Phys. 2013, 39, 229–245.
  62. Linna, R.P.; Moisio, J.E.; Suhonen, P.M.; Kaski, K. Dynamics of polymer ejection from capsid. Phys. Rev. E.2014, 89, 052702.
  63. Cao, Q.; Bachmann, M. Dynamics and limitations of spontaneous polyelectrolyte intrusion into a charged nanocavity. Phys. Rev. E 2014, 90, 060601.
  64. D. E. Smith, S. J. Tans, S. B. Smith, S. Grimes, D. L.Anderson, C. Bustamante, Nature (London) 413, 748 (2001).
  65. P. G. de Gennes, Proc. Natl. Acad. Sci. U.S.A. 96,7262(1999).
  66. J. Arsuaga, M. Vazquez, P. McGuirk, S. Trigueros, D.W. Sumners, J. Roca, Proc. Natl. Acad. Sci.U.S.A. 102,9165(2005).
  67. R. Kapral, Adv. Chem. Phys. 140, 89 (2008).
  68. I. Ali, D. Marenduzzo, and J. M. Yeomans, J. Chem.Phys. 121, 8635 (2004); Phys. Rev. Lett. 96, 208102(2006).
  69. K. Kremer and G. S. Grest, J. Chem. Phys. 92, 5057 (1991).
  70. A. Cacciuto, and E. Luijten, Nano Lett. 6, 901 (2006).
  71. T. Sakaue, and E. Rapha¨el, Macromolecules 39, 2621(2006).
  72. C. Micheletti, D. Marenduzzo, and E. Orlandini, Phys.Rep.504,1(2011).
  73. U. F. Keyser, B. N. Koeleman, S. V. Dorp, D. Krapf, R. M. M.Smeets, S. G. Lemay, N. H. Dekker, and C.Dekker,Nat.Phys.2,473(2006).
  74. H. W. de Haan, D. Sean, and G. W. Slater, Phys. Rev.E91,022601 (2015).
  75. J. Sarabadani, B. Ghosh, S. Chaudhury, and T. AlaNissila,Europhys.Lett.120,38004(2017).
  76. F. Brochard-Wyart Europhys. Lett. 23, 105 (1993); 26,511(1994);30,387(1995).
  77. P. Pincus Macromolecules 9, 386 (1976)

Publication Details

Published in : Volume 2 | Issue 6 | November-December 2019
Date of Publication : 2019-12-30
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 34-47
Manuscript Number : GISRRJ19264
Publisher : Technoscience Academy

ISSN : 2582-0095

Cite This Article :

Fikre Jida, "Polymer Translocation through a Nanopore under a Pulling Force - A 3D Langevin Dynamics Simulation Study ", Gyanshauryam, International Scientific Refereed Research Journal (GISRRJ), ISSN : 2582-0095, Volume 2, Issue 6, pp.34-47, November-December.2019
URL : https://gisrrj.com/GISRRJ19264

Article Preview