Modeling Customer Retention Probability Using Integrated CRM and Email Analytics

Authors(5) :-Omolola Temitope Kufile, Bisayo Oluwatosin Otokiti, Abiodun Yusuf Onifade, Bisi Ogunwale, Chinelo Harriet Okolo

Understanding and predicting customer retention has become a critical competitive differentiator in modern business strategy. As organizations strive to maximize customer lifetime value and minimize churn, integrating Customer Relationship Management (CRM) data with email marketing analytics offers a robust foundation for predictive modeling. This paper proposes a comprehensive probabilistic framework that utilizes logistic regression, machine learning classification models, and behavioral segmentation to forecast customer retention probabilities. Through the fusion of CRM interaction logs and email campaign engagement metrics such as open rates, click-through rates, and email recency/frequency the study provides a scalable solution for retention-focused targeting. The model’s predictive performance is validated through application across three industry datasets, revealing significant gains in retention forecasting accuracy and actionable segmentation. Moreover, the framework underscores the interpretability of model outputs, enabling marketing and CRM professionals to design adaptive outreach strategies. The findings suggest that retention probability modeling using integrated data streams enhances organizational capability to engage proactively and profitably with at-risk customer segments.

Authors and Affiliations

Omolola Temitope Kufile
Amazon Advertising, United States
Bisayo Oluwatosin Otokiti
Department of Business and Entrepreneurship, Kwara State University, Nigeria
Abiodun Yusuf Onifade
Independent Researcher, California, USA
Bisi Ogunwale
Independent Researcher, Canada
Chinelo Harriet Okolo
First Security Discount House (FSDH), Marina, Lagos state, Nigeria

Customer retention, CRM analytics, email metrics, churn modeling, predictive marketing, machine learning

  1. N. J. Sam-Bulya, A. N. Igwe, O. P. Oyeyemi, K. F. Anjorin, and S. E. Ewim, “Impact of customer-centric marketing on FMCG supply chain efficiency and SME profitability,” Glob. J. Res. Multidiscip. Stud. Forthcom., 2023, Online]. Available: https://scholar.google.com/scholar?cluster=15251156588141283934&hl=en&oi=scholarr
  2. C. D. ZARAGOZA SAUCEDO, “Predictive Modeling of Customer Churn in the Home-to-Home Program Industry: A Time-to-Churn Analysis.,” 2023, Online]. Available: https://unitesi.unive.it/handle/20.500.14247/25035
  3. J. O. Shiyanbola, J. O. Omisola, and G. O. Osho, “An Agile Workflow Management Framework for Industrial Operations: Migrating from Email-Based Systems to Visual JIRA-Kanban Platforms,” 2023, Accessed: May 31, 2025. Online]. Available: https://www.researchgate.net/profile/Joseph-Shiyanbola/publication/392027424_An_Agile_Workflow_Management_Framework_for_Industrial_Operations_Migrating_from_Email-Based_Systems_to_Visual_JIRA-Kanban_Platforms/links/6830e26c8a76251f22e63a24/An-Agile-Workflow-Management-Framework-for-Industrial-Operations-Migrating-from-Email-Based-Systems-to-Visual-JIRA-Kanban-Platforms.pdf
  4. N. J. Sam-Bulya, O. P. Oyeyemi, A. N. Igwe, K. F. Anjorin, and S. E. Ewim, “Integrating digital marketing strategies for enhanced FMCG SME supply chain resilience,” Int. J. Bus. Manag., vol. 12, no. 2, pp. 15–22, 2023.
  5. I. Oyeyipo et al., “A Conceptual Framework for Transforming Corporate Finance Through Strategic Growth, Profitability, and Risk Optimization,” Int. J. Adv. Multidiscip. Res. Stud., vol. 3, no. 5, pp. 1527–1538, Oct. 2023, doi: 10.62225/2583049X.2023.3.5.3915.
  6. O. J. Oteri, E. C. Onukwulu, A. N. Igwe, C. P.-M. Ewim, A. I. Ibeh, and A. Sobowale, “Artificial Intelligence in Product Pricing and Revenue Optimization: Leveraging Data-Driven Decision-Making,” Int. J. Multidiscip. Res. Growth Eval., vol. 4, no. 1, pp. 842–851, 2023, doi: 10.54660/.IJMRGE.2023.4.1-842-851.
  7. E. C. Onukwulu, J. E. Fiemotongha, A. N. Igwe, and C. P. M. Ewim, “Mitigating market volatility: Advanced techniques for enhancing stability and profitability in energy commodities trading,” Int. J. Manag. Organ. Res., vol. 3, no. 1, pp. 131–148, 2023.
  8. D. Yadav, J. Singh, P. Verma, V. Rajpoot, and G. Chhabra, “A Novel Approach for Enhancing Customer Retention Using Machine Learning Techniques in Email Marketing Application,” in 2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS), IEEE, 2023, pp. 1–6. Online]. Available: https://ieeexplore.ieee.org/abstract/document/10136072/
  9. E. C. Onukwulu, J. E. Fiemotongha, A. N. Igwe, and C. P.-M. Ewim, “Transforming supply chain logistics in oil and gas: best practices for optimizing efficiency and reducing operational costs,” J. Adv. Multidiscip. Res., vol. 2, no. 2, Art. no. 2, Aug. 2023.
  10. I. Ullah, B. Raza, A. K. Malik, M. Imran, S. U. Islam, and S. W. Kim, “A churn prediction model using random forest: analysis of machine learning techniques for churn prediction and factor identification in telecom sector,” IEEE Access, vol. 7, pp. 60134–60149, 2019.
  11. E. C. Onukwulu, J. E. Fiemotongha, A. N. Igwe, and C. P. M. Ewim, “Marketing strategies for enhancing brand visibility and sales growth in the petroleum sector: Case studies and key insights from industry leaders,” Int. J. Manag. Organ. Res., vol. 2, no. 1, pp. 74–86, 2023.
  12. E. C. Onukwulu, M. O. Agho, and N. L. Eyo-Udo, “Decentralized energy supply chain networks using blockchain and IoT,” Int. J. Sch. Res. Multidiscip. Stud., vol. 2, no. 2, pp. 066–085, 2023.
  13. O. M. Oluoha, A. Odeshina, O. Reis, F. Okpeke, V. Attipoe, and O. H. Orieno, “Optimizing Business Decision-Making with Advanced Data Analytics Techniques,” Iconic Res. Eng. J., vol. 6, no. 5, pp. 184–203, Dec. 2022.
  14. Oluchukwu Modesta Oluoha, Abisola Odeshina, Oluwatosin Reis, and Friday Okpeke, “Developing Compliance-Oriented Social Media Risk Management Models to Combat Identity Fraud and Cyber Threats | Request PDF,” ResearchGate, Apr. 2025, doi: 10.54660/.IJMRGE.2023.4.1.1055-1073.
  15. J. O. Ojadi, E. C. Onukwulu, C. S. Odionu, and O. A. Owulade, “Natural Language Processing for Climate Change Policy Analysis and Public Sentiment Prediction: A Data-Driven Approach to Sustainable Decision-Making,” vol. 7, no. 3, 2023.
  16. J. O. Ojadi, E. C. Onukwulu, C. S. Odionu, and O. A. Owulade, “Leveraging IoT and Deep Learning for Real-Time Carbon Footprint Monitoring and Optimization in Smart Cities and Industrial Zones,” vol. 6, no. 11, 2023.
  17. J. O. Ojadi, E. C. Onukwulu, C. S. Odionu, and O. A. Owulade, “AI-Driven Predictive Analytics for Carbon Emission Reduction in Industrial Manufacturing: A Machine Learning Approach to Sustainable Production,” Int. J. Multidiscip. Res. Growth Eval., vol. 4, no. 1, pp. 948–960, 2023, doi: 10.54660/.IJMRGE.2023.4.1.948-960.
  18. Y. Sun, H. Liu, and Y. Gao, “Research on customer lifetime value based on machine learning algorithms and customer relationship management analysis model,” Heliyon, vol. 9, no. 2, 2023, Online]. Available: https://www.cell.com/heliyon/fulltext/S2405-8440(23)00591-1
  19. J. C. Ogeawuchi, A. C. Uzoka, A. A. Abayomi, O. A. Agboola, T. P. Gbenle, and O. O. Ajayi, “Innovations in Data Modeling and Transformation for Scalable Business Intelligence on Modern Cloud Platforms,” Iconic Res. Eng. J., vol. 5, no. 5, pp. 406–415, Nov. 2021.
  20. N. Singh, P. Singh, K. K. Singh, and A. Singh, “Machine learning based classification and segmentation techniques for CRM: a customer analytics,” Int. J. Bus. Forecast. Mark. Intell., vol. 6, no. 2, p. 99, 2020, doi: 10.1504/IJBFMI.2020.109878.
  21. J. C. Ogeawuchi, O. E. Akpe, A. A. Abayomi, O. A. Agboola, E. Ogbuefi, and S. Owoade, “Systematic Review of Advanced Data Governance Strategies for Securing Cloud-Based Data Warehouses and Pipelines,” Iconic Res. Eng. J., vol. 6, no. 1, pp. 784–794, Jul. 2022.
  22. N. Singh, P. Singh, and M. Gupta, “An inclusive survey on machine learning for CRM: a paradigm shift,” DECISION, vol. 47, no. 4, pp. 447–457, Dec. 2020, doi: 10.1007/s40622-020-00261-7.
  23. E. Ogbuefi, A. C. Mgbame, O. E. Akpe, A. A. Abayomi, and O. O. Adeyelu, “Affordable Automation: Leveraging Cloud-Based BI Systems for SME Sustainability,” Iconic Res. Eng. J., vol. 5, no. 12, pp. 489–505, Jun. 2022.
  24. S. M. Sina Mirabdolbaghi and B. Amiri, “Model Optimization Analysis of Customer Churn Prediction Using Machine Learning Algorithms with Focus on Feature Reductions,” Discrete Dyn. Nat. Soc., vol. 2022, no. 1, p. 5134356, Jan. 2022, doi: 10.1155/2022/5134356.
  25. V. Srigopal, “Predicting customer churn risks and optimizing retention investments using reliability and maintenance engineering,” 2018, Online]. Available: https://pure.tue.nl/ws/portalfiles/portal/107234073/Master_Thesis_Vinay_Srigopal.pdf
  26. NJ Sam-Bulya, OP Oyeyemi, AN Igwe, KF Anjorin, SE Ewim, “Omnichannel strategies and their effect on FMCG SME supply chain performance and market growth.” Online]. Available: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=JD3slFYAAAAJ&pagesize=80&citation_for_view=JD3slFYAAAAJ:P5F9QuxV20EC
  27. F. Shirazi and M. Mohammadi, “A big data analytics model for customer churn prediction in the retiree segment,” Int. J. Inf. Manag., vol. 48, pp. 238–253, 2019.
  28. A. C. Mgbame, O. E. Akpe, A. A. Abayomi, E. Ogbuefi, and O. O. Adeyelu, “Building Data-Driven Resilience in Small Businesses: A Framework for Operational Intelligence,” Iconic Res. Eng. J., vol. 5, no. 9, pp. 695–712, Mar. 2022.
  29. A. Sharma, N. Patel, and R. Gupta, “Leveraging Reinforcement Learning and Predictive Analytics for AI-Enhanced Marketing Funnel Optimization,” Eur. Adv. AI J., vol. 11, no. 10, 2022, Online]. Available: https://eaaij.com/index.php/eaaij/article/view/21
  30. A. C. Mgbame, O. E. Akpe, A. A. Abayomi, E. Ogbuefi, and O. O. Adeyelu, “Barriers and Enablers of BI Tool Implementation in Underserved SME Communities,” Iconic Res. Eng. J., vol. 3, no. 7, pp. 211–226, Jan. 2020.
  31. A. Sinha and D. S. Raizada, “Modelling Customer Churn Rate and Its Use for Customer Retention Planning,” in Proceedings of the International Conference on Advances in Management Practices (ICAMP 2021), 2022. Online]. Available: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3998408
  32. Julius Olatunde Omisola, Joseph Oluwasegun Shiyanbola, Grace Omotunde Osho, “A Process Automation Framework for Smart Inventory Control: Reducing Operational Waste through JIRA-Driven Workflow and Lean Practices.” Accessed: May 31, 2025. Online]. Available: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ZX-Rz3cAAAAJ&citation_for_view=ZX-Rz3cAAAAJ:eQOLeE2rZwMC
  33. M. Selim, “The effect of customer analytics on customer churn,” 2022, Online]. Available: https://www.researchgate.net/profile/Moushira-Koueider/publication/361025879_The_Effect_of_Customer_Analytics_on_Customer_Churn/links/6298a980416ec50bdb04c72f/The-Effect-of-Customer-Analytics-on-Customer-Churn.pdf
  34. Joyce Efekpogua Fiemotongha, Abbey Ngochindo Igwe, Chikezie Paul-Mikki Ewim, and Ekene Cynthia Onukwulu, “Innovative trading strategies for optimizing profitability and reducing risk in global oil and gas markets | Journal of Advance Multidisciplinary Research.” Online]. Available: https://synstojournals.com/multi/article/view/142
  35. N. J. Isibor, C. Paul-Mikki Ewim, A. I. Ibeh, E. M. Adaga, N. J. Sam-Bulya, and G. O. Achumie, “A Generalizable Social Media Utilization Framework for Entrepreneurs: Enhancing Digital Branding, Customer Engagement, and Growth,” Int. J. Multidiscip. Res. Growth Eval., vol. 2, no. 1, pp. 751–758, 2021, doi: 10.54660/.IJMRGE.2021.2.1.751-758.
  36. R. Reddy, A. Joshi, R. Nair, and S. Singh, “Leveraging Reinforcement Learning and Predictive Analytics for AI-Enhanced Marketing Funnel Optimization,” Int. J. AI ML Innov., vol. 11, no. 8, 2022, Online]. Available: http://ijoaimli.com/index.php/v1/article/view/4
  37. O. Ilori, C. I. Lawal, S. C. Friday, N. J. Isibor, and E. C. Chukwuma- Eke, “A Framework for Environmental, Social, and Governance (ESG) Auditing: Bridging Gaps in Global Reporting Standards,” Int. J. Soc. Sci. Except. Res., vol. 2, no. 1, pp. 231–248, 2023, doi: 10.54660/IJSSER.2023.2.1.231-248.
  38. R. K. PAUL and A. K. JANA, “Machine learning framework for improving customer retention and revenue using churn prediction models,” IRE J., vol. 7, no. 2, pp. 100–106, 2023.
  39. O. O. George, R. E. Dosumu, and C. O. Makata, “Integrating Multi-Channel Brand Communication: A Conceptual Model for Achieving Sustained Consumer Engagement and Loyalty,” Int. J. Manag. Organ. Res., vol. 2, no. 1, pp. 254–260, 2023, doi: 10.54660/IJMOR.2023.2.1.254-260.
  40. S. A. Panimalar and A. Krishnakumar, “A review of churn prediction models using different machine learning and deep learning approaches in cloud environment,” J. Curr. Sci. Technol., vol. 13, no. 1, pp. 136–161, 2023.
  41. A. Farooq, A. B. N. Abbey, and E. C. Onukwulu, “Optimizing Grocery Quality and Supply Chain Efficiency Using AI-Driven Predictive Logistics,” vol. 7, no. 1, 2023.
  42. U. S. Nwabekee, E. E. Aniebonam, O. O. Elumilade, and O. Y. Ogunsola, “Predictive Model for Enhancing Long-Term Customer Relationships and Profitability in Retail and Service-Based,” 2021, Online]. Available: https://www.researchgate.net/profile/Oluwafunmike-Elumilade/publication/390696104_Predictive_Model_for_Enhancing_Long-Term_Customer_Relationships_and_Profitability_in_Retail_and_Service-Based/links/67f93ca160241d51400b4ab8/Predictive-Model-for-Enhancing-Long-Term-Customer-Relationships-and-Profitability-in-Retail-and-Service-Based.pdf
  43. Ezinne C. Chukwuma-Eke, Verlinda Attipoe, Comfort Iyabode Lawal, Solomon Christopher Friday, Ngozi Joan Isibor, Abiola Oyeronke Akintobi, “Innovative Financial Instruments for Scaling Renewable Energy Projects: A Focus on Impact Investments for SMEs in the Energy Sector.” Online]. Available: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Zm0csPMAAAAJ&authuser=1&citation_for_view=Zm0csPMAAAAJ:_FxGoFyzp5QC
  44. P. Narina, “Customer churn prediction tool using deep learning: a case of an ecommerce business operating in Kenya.,” PhD Thesis, Ph. D. dissertation, Strathmore University, 2023. Online]. Available: https://su-plus.strathmore.edu/bitstreams/ee99f219-415b-47bf-bcc0-f2127055a382/download
  45. J. O. Basiru, C. L. Ejiofor, E. C. Onukwulu, and R. U. Attah, “Optimizing Administrative Operations: A Conceptual Framework for Strategic Resource Management in Corporate Settings,” Int. J. Multidiscip. Res. Growth Eval., vol. 4, no. 1, pp. 760–773, 2023, doi: 10.54660/.IJMRGE.2023.4.1.760-773.
  46. D. C. Ayodeji, I. Oyeyipo, V. Attipoe, N. J. Isibor, and B. A. Mayienga, “Analyzing the Challenges and Opportunities of Integrating Cryptocurrencies into Regulated Financial Markets,” Int. J. Multidiscip. Res. Growth Eval., vol. 4, no. 6, pp. 1190–1196, 2023, doi: 10.54660/.IJMRGE.2023.4.6.1190-1196.
  47. E. C. Chukwuma-Eke, O. Y. Ogunsola, and N. J. Isibor, “Conceptualizing digital financial tools and strategies for effective budget management in the oil and gas sector,” Int. J. Manag. Organ. Res., vol. 2, no. 1, pp. 230–246, 2023.
  48. L. E. Muñoz, “Customer Churn Detection and Marketing Retention Strategies in the Online Food Delivery Business,” 2022, Online]. Available: https://repositorio.utdt.edu/handle/20.500.13098/11860
  49. EC Onukwulu, JE Fiemotongha, AN Igwe, CPM Ewim, “The evolution of risk management practices in global oil markets: Challenges and opportunities for modern traders.” Online]. Available: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=JD3slFYAAAAJ&pagesize=80&citation_for_view=JD3slFYAAAAJ:UxriW0iASnsC
  50. V. Morozov, O. Mezentseva, A. Kolomiiets, and M. Proskurin, “Predicting Customer Churn Using Machine Learning in IT Startups,” in Lecture Notes in Computational Intelligence and Decision Making, vol. 77, S. Babichev and V. Lytvynenko, Eds., in Lecture Notes on Data Engineering and Communications Technologies, vol. 77. , Cham: Springer International Publishing, 2022, pp. 645–664. doi: 10.1007/978-3-030-82014-5_45.
  51. V. K. T. A. K. Mittapelly, “Predictive CRM Insights: Exploring Deep Learning Applications in Salesforce Data Analytics,” 2021, Online]. Available: https://philpapers.org/rec/ARUPCI
  52. Ekene Cynthia Onukwulu, Mercy Odochi Agho, and Nsisong Louis Eyo-Udo, “Developing a framework for AI-driven optimization of supply chains in energy sector,” Glob. J. Adv. Res. Rev., vol. 1, no. 2, pp. 082–101, Dec. 2023, doi: 10.58175/gjarr.2023.1.2.0064.
  53. Ezinne C Chukwuma-Eke, Olakojo Yusuff Ogunsola, Ngozi Joan Isibor, “A Conceptual Framework for Ensuring Financial Transparency in Joint Venture Operations in the Energy Sector.” Online]. Available: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=sJAYP0YAAAAJ&cstart=20&pagesize=80&citation_for_view=sJAYP0YAAAAJ:_FxGoFyzp5QC
  54. W. D. Mitchell, Proactive predictive analytics within the customer lifecycle to Prevent Customer Churn. Northcentral University, 2020. Online]. Available: https://search.proquest.com/openview/7ca61610c3ed19dc5cca2e293883c107/1?pq-origsite=gscholar&cbl=18750&diss=y
  55. O. J. Esan, O. T. Uzozie, O. Onaghinor, G. O. Osho, and J. O. Omisola, “Leading with Lean Six Sigma and RPA in High-Volume Distribution: A Comprehensive Framework for Operational Excellence,” Int. J. Multidiscip. Res. Growth Eval., vol. 4, no. 1, pp. 1158–1164, 2023, doi: 10.54660/.IJMRGE.2023.4.1.1158-1164.
  56. Ekene Cynthia Onukwulu, Mercy Odochi Agho, and Nsisong Louis Eyo-Udo, “Sustainable supply chain practices to reduce carbon footprint in oil and gas,” Glob. J. Res. Multidiscip. Stud., vol. 1, no. 2, pp. 024–043, Dec. 2023, doi: 10.58175/gjrms.2023.1.2.0044.
  57. D. C. Ayodeji, I. Oyeyipo, V. Attipoe, N. J. Isibor, and B. A. Mayienga, “Analyzing the Challenges and Opportunities of Integrating Cryptocurrencies into Regulated Financial Markets,” Int. J. Multidiscip. Res. Growth Eval., vol. 4, no. 6, pp. 1190–1196, 2023, doi: 10.54660/.IJMRGE.2023.4.6.1190-1196.
  58. O. Awoyemi, R. U. Attah, J. O. Basiru, and I. M. Leghemo, “A Technology Integration Blueprint for Overcoming Digital Literacy Barriers in Developing World Educational Systems,” Iconic Res. Eng. J., vol. 7, no. 3, pp. 722–730, Sep. 2023.
  59. O. Awoyemi, R. U. Attah, J. O. Basiru, and I. M. Leghemo, “A Technology Integration Blueprint for Overcoming Digital Literacy Barriers in Developing World Educational Systems,” Iconic Res. Eng. J., vol. 7, no. 3, pp. 722–730, Sep. 2023.
  60. Attipoe V., Chukwuma-Eke E.C., Lawal C.I., Friday S.C., Isibor N.J., Akintobi A.O., “Designing a Data-Driven Sustainable Finance Model: A Pathway for Small and Medium Enterprises to Transition to Clean Energy.” Online]. Available: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Zm0csPMAAAAJ&authuser=1&citation_for_view=Zm0csPMAAAAJ:ufrVoPGSRksC
  61. B. Mishachandar and K. A. Kumar, “Predicting customer churn using targeted proactive retention,” Int. J. Eng. Technol., vol. 7, no. 2.27, p. 69, 2018.
  62. Anate Benoit Nicaise Abbey, Iyadunni Adewola Olaleye, Chukwunweike Mokogwu, Amarachi Queen Olufemi-Phillips, and Titilope Tosin Adewale, “Developing economic frameworks for optimizing procurement strategies in public and private sectors,” Int. J. Frontline Res. Multidiscip. Stud., vol. 2, no. 1, pp. 019–026, Dec. 2023, doi: 10.56355/ijfrms.2023.2.1.0033.
  63. A. A. Abayomi, A. C. Mgbame, O. E. Akpe, E. Ogbuefi, and O. O. Adeyelu, “Advancing Equity Through Technology: Inclusive Design of BI Platforms for Small Businesses,” Iconic Res. Eng. J., vol. 5, no. 4, pp. 235–250, Oct. 2021.
  64. A. A. Abayomi, B. C. Ubanadu, A. I. Daraojimba, O. A. Agboola, E. Ogbuefi, and S. Owoade, “A Conceptual Framework for Real-Time Data Analytics and Decision-Making in Cloud-Optimized Business Intelligence Systems,” Iconic Res. Eng. J., vol. 5, no. 9, pp. 713–722, Mar. 2022.
  65. K. Matuszelański and K. Kopczewska, “Customer churn in retail e-commerce business: Spatial and machine learning approach,” J. Theor. Appl. Electron. Commer. Res., vol. 17, no. 1, pp. 165–198, 2022.
  66. A. Abisoye, “AI Literacy in STEM Education: Policy Strategies for Preparing the Future Workforce,” J. Front. Multidiscip. Res., vol. 4, no. 1, pp. 17–24, 2023, doi: 10.54660/JFMR.2023.4.1.17-24.
  67. M. R. Kumar, J. Venkatesh, and A. M. J. M. Z. Rahman, “Data mining and machine learning in retail business: developing efficiencies for better customer retention,” J. Ambient Intell. Humaniz. Comput., Jan. 2021, doi: 10.1007/s12652-020-02711-7.
  68. F. M. Kilonzi, “Using analytical CRM system to reduce churn in the telecom sector: A macine learning approach,” 2019, Online]. Available: https://air.ashesi.edu.gh/bitstream/handle/20.500.11988/477/Kilonzi_Faith_2019_CS_AppliedProject.pdf?sequence=1
  69. S. Khodabandehlou and M. Zivari Rahman, “Comparison of supervised machine learning techniques for customer churn prediction based on analysis of customer behavior,” J. Syst. Inf. Technol., vol. 19, no. 1/2, pp. 65–93, 2017.
  70. Adesemoye O.E., Chukwuma-Eke E.C., Lawal C.I., Isibor N.J., Akintobi A.O., Ezeh F.S., “A Conceptual Framework for Integrating Data Visualization into Financial Decision- Making for Lending Institutions.” Online]. Available: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Zm0csPMAAAAJ&authuser=1&citation_for_view=Zm0csPMAAAAJ:hqOjcs7Dif8C
  71. Adesemoye O.E., Chukwuma-Eke E.C., Lawal C.I., Isibor N.J., Akintobi A.O., Ezeh F.S., “Optimizing SME Banking with Data Analytics for Economic Growth and Job Creation.” Online]. Available: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Zm0csPMAAAAJ&authuser=1&citation_for_view=Zm0csPMAAAAJ:WF5omc3nYNoC
  72. P. A. Karolczak and I. H. Manssour, “Using Visual Analytics to Reduce Churn,” in Computational Science and Its Applications – ICCSA 2021, vol. 12951, O. Gervasi, B. Murgante, S. Misra, C. Garau, I. Blečić, D. Taniar, B. O. Apduhan, A. M. A. C. Rocha, E. Tarantino, and C. M. Torre, Eds., in Lecture Notes in Computer Science, vol. 12951. , Cham: Springer International Publishing, 2021, pp. 380–393. doi: 10.1007/978-3-030-86970-0_27.
  73. N. Karimi, A. Dash, S. S. Rautaray, and M. Pandey, “Customer Profiling and Retention Using Recommendation System and Factor Identification to Predict Customer Churn in Telecom Industry,” in Machine Learning: Theoretical Foundations and Practical Applications, vol. 87, M. Pandey and S. S. Rautaray, Eds., in Studies in Big Data, vol. 87. , Singapore: Springer Singapore, 2021, pp. 155–172. doi: 10.1007/978-981-33-6518-6_9.
  74. O. E. Akpe, J. C. Ogeawuchi, A. A. Abayomi, and O. A. Agboola, “Advances in Stakeholder-Centric Product Lifecycle Management for Complex, Multi-Stakeholder Energy Program Ecosystems,” Iconic Res. Eng. J., vol. 4, no. 8, pp. 179–188, Feb. 2021.
  75. J. Jose, “Predicting customer retention of an App-based business using supervised machine learning,” 2019, Online]. Available: https://arrow.tudublin.ie/scschcomdis/170/
  76. J. O. Basiru, C. L. Ejiofor, E. C. Onukwulu, and U. Attah, “Corporate Health and Safety Protocols: A Conceptual Model for Ensuring Sustainability in Global Operations,” vol. 6, no. 8, 2023.
  77. S. H. Iranmanesh, M. Hamid, M. Bastan, G. Hamed Shakouri, and M. M. Nasiri, “Customer churn prediction using artificial neural network: An analytical CRM application,” in Proceedings of the International Conference on Industrial Engineering and Operations Management, Pilsen, Czech Republic, 2019, pp. 23–26. Online]. Available: http://ieomsociety.org/pilsen2019/papers/207.pdf
  78. C. C. Ike, A. B. Ige, S. A. Oladosu, P. A. Adepoju, O. O. Amoo, and A. I. Afolabi, “Advancing machine learning frameworks for customer retention and propensity modeling in ecommerce platforms,” GSC Adv Res Rev, vol. 14, no. 2, p. 17, 2023.
  79. A. Granov, “Customer loyalty, return and churn prediction through machine learning methods: for a Swedish fashion and e-commerce company.” 2021. Online]. Available: https://www.diva-portal.org/smash/record.jsf?pid=diva2:1568247
  80. N. Gordini and V. Veglio, “Customers churn prediction and marketing retention strategies. An application of support vector machines based on the AUC parameter-selection technique in B2B e-commerce industry,” Ind. Mark. Manag., vol. 62, pp. 100–107, 2017.
  81. P. Golec et al., “Forecasting e-learning Course Purchases Using Deep Learning Based on Customer Retention,” in Emerging Challenges in Intelligent Management Information Systems, vol. 1079, M. Hernes and J. Wątróbski, Eds., in Lecture Notes in Networks and Systems, vol. 1079. , Cham: Springer Nature Switzerland, 2024, pp. 142–155. doi: 10.1007/978-3-031-66761-9_13.
  82. I. de C. P. Ferreira, “Churn Prediction in Digital Marketing,” Master’s Thesis, Universidade do Porto (Portugal), 2019. Online]. Available: https://search.proquest.com/openview/7798260609af69a4aa2d7b5350e5c1ae/1?pq-origsite=gscholar&cbl=2026366&diss=y
  83. R. Florez-Lopez and J. M. Ramon-Jeronimo, “Marketing Segmentation Through Machine Learning Models: An Approach Based on Customer Relationship Management and Customer Profitability Accounting,” Soc. Sci. Comput. Rev., vol. 27, no. 1, pp. 96–117, Feb. 2009, doi: 10.1177/0894439308321592.
  84. O. Emma and J. Tawkoski, “Behavioral Analytics for User Engagement: Leveraging AI to Improve Retention Rates,” 2022, Online]. Available: https://www.researchgate.net/profile/Emma-Oye/publication/389249904_Behavioral_Analytics_for_User_Engagement_Leveraging_AI_to_Improve_Retention_Rates/links/67ba0507f5cb8f70d5baa251/Behavioral-Analytics-for-User-Engagement-Leveraging-AI-to-Improve-Retention-Rates.pdf
  85. A. Chorianopoulos, Effective CRM using predictive analytics. John Wiley & Sons, 2015.
  86. J. Burez and D. Van den Poel, “CRM at a pay-TV company: Using analytical models to reduce customer attrition by targeted marketing for subscription services,” Expert Syst. Appl., vol. 32, no. 2, pp. 277–288, 2007.
  87. B. I. Adekunle, E. C. Chukwuma-Eke, E. D. Balogun, and K. O. Ogunsola, “Improving customer retention through machine learning: A predictive approach to churn prevention and engagement strategies,” Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., vol. 9, no. 4, pp. 507–523, 2023.
  88. O. Adeniji, “Business to consumers (B2C): the effect of machine learning application in telecom customer churn management,” PhD Thesis, Dublin Business School, 2020. Online]. Available: https://esource.dbs.ie/bitstream/10788/4234/1/msc_adeniji_o_2020.pdf
  89. F. E. Adikwu, C. O. Ozobu, O. Odujobi, F. O. Onyekwe, and E. O. Nwulu, “Advances in EHS Compliance: A Conceptual Model for Standardizing Health, Safety, and Hygiene Programs Across Multinational Corporations,” vol. 7, no. 5, 2023.
  90. Christian Chukwuemeka Ike, Adebimpe Bolatito Ige, Sunday Adeola Oladosu, Peter Adeyemo Adepoju, Olukunle Oladipupo Amoo, and Adeoye Idowu Afolabi, “Redefining zero trust architecture in cloud networks: A conceptual shift towards granular, dynamic access control and policy enforcement,” Magna Sci. Adv. Res. Rev., vol. 2, no. 1, pp. 074–086, Jun. 2021, doi: 10.30574/msarr.2021.2.1.0032.
  91. M. Ahlin and F. Ranby, “Predicting Marketing Churn Using Machine Learning Models.” 2019. Online]. Available: https://www.diva-portal.org/smash/record.jsf?pid=diva2:1335397
  92. E. Ascarza et al., “In Pursuit of Enhanced Customer Retention Management: Review, Key Issues, and Future Directions,” Cust. Needs Solut., vol. 5, no. 1–2, pp. 65–81, Mar. 2018, doi: 10.1007/s40547-017-0080-0.
  93. H. Aamri, “Empowering SMEs with AI: Driving Digital Transformation for Sustainable and Scalable Growth”.
  94. O. M. Oluoha, A. Odeshina, O. Reis, F. Okpeke, V. Attipoe, and O. H. Orieno, “A Privacy-First Framework for Data Protection and Compliance Assurance in Digital Ecosystems,” Iconic Res. Eng. J., vol. 7, no. 4, pp. 620–646, Oct. 2023.
  95. Chisom Elizabeth Alozie, J. I. Akerele, E. Kamau, and T. Myllynen, “Fault Tolerance in Cloud Environments: Techniques and Best Practices from Site Reliability Engineering,” 2025, Unpublished. doi: 10.13140/RG.2.2.25813.54242.
  96. V. Attipoe et al., “Economic Impacts of Employee Well-being Programs: A Review,” Int. J. Adv. Multidiscip. Res. Stud., vol. 5, no. 2, pp. 852–860, Mar. 2025, doi: 10.62225/2583049X.2025.5.2.3907.
  97. Adebimpe Bolatito Ige, Eseoghene Kupa, and Oluwatosin Ilori, “Aligning sustainable development goals with cybersecurity strategies: Ensuring a secure and sustainable future,” GSC Adv. Res. Rev., vol. 19, no. 3, pp. 344–360, Jun. 2024, doi: 10.30574/gscarr.2024.19.3.0236.
  98. A. S. Adebayo, N. Chukwurah, and O. O. Ajayi, “Proactive Ransomware Defense Frameworks Using Predictive Analytics and Early Detection Systems for Modern Enterprises”.
  99. Abbey Ngochindo Igwe, Nsisong Louis Eyo-Udo, Adekunle Stephen Toromade, and Titilope Tosin Adewale, “Policy implications and economic incentives for sustainable supply chain practices in the food and FMCG Sectors,” Compr. Res. Rev. J., vol. 2, no. 1, pp. 023–036, Oct. 2024, doi: 10.57219/crrj.2024.2.1.0027.
  100. A. M. Abdul-Yekeen, M. A. Kolawole, B. Iyanda, and H. A. Abdul-Yekeen, “LEVERAGING PREDICTIVE ANALYTICS TO OPTIMIZE SME MARKETING STRATEGIES IN THE US,” J. Knowl. Learn. Sci. Technol. ISSN 2959-6386 Online, vol. 3, no. 3, Art. no. 3, Jul. 2024, doi: 10.60087/jklst.vol3.n3.p73-102.
  101. E. C. Chukwuma-Eke, O. Y. Ogunsola, and N. J. Isibor, “A Conceptual Approach to Cost Forecasting and Financial Planning in Complex Oil and Gas Projects,” Int. J. Multidiscip. Res. Growth Eval., vol. 3, no. 1, pp. 819–833, 2022, doi: 10.54660/.IJMRGE.2022.3.1.819-833.
  102. M. E. Abed and A. Castro-Lopez, “The impact of AI-powered technologies on aesthetic, cognitive and affective experience dimensions: a connected store experiment,” Asia Pac. J. Mark. Logist., vol. 36, no. 3, pp. 715–735, Sep. 2023, doi: 10.1108/APJML-02-2023-0109.
  103. A. Abisoye and J. I. Akerele, “A High-Impact Data-Driven Decision-Making Model for Integrating Cutting-Edge Cybersecurity Strategies into Public Policy, Governance, and Organizational Frameworks,” Int. J. Multidiscip. Res. Growth Eval., vol. 2, no. 1, pp. 623–637, 2021, doi: 10.54660/.IJMRGE.2021.2.1.623-637.
  104. A. Abisoye, C. A. Udeh, and C. A. Okonkwo, “The Impact of AI-Powered Learning Tools on STEM Education Outcomes: A Policy Perspective,” Int. J. Multidiscip. Res. Growth Eval., vol. 3, no. 1, pp. 121–127, 2022, doi: 10.54660/.IJMRGE.2022.3.1.121-127.
  105. A. Abisoye, “AI Literacy in STEM Education: Policy Strategies for Preparing the Future Workforce,” J. Front. Multidiscip. Res., vol. 4, no. 1, pp. 17–24, 2023, doi: 10.54660/JFMR.2023.4.1.17-24.
  106. A. Aagaard and F. Rezac, “Governing the interplay of inter-organizational relationship mechanisms in open innovation projects across ecosystems,” Ind. Mark. Manag., vol. 105, pp. 131–146, Aug. 2022, doi: 10.1016/j.indmarman.2022.06.003.
  107. O. A. Abieba, C. E. Alozie, and O. O. Ajayi, “Enhancing Disaster Recovery and Business Continuity in Cloud Environments through Infrastructure as Code,” J. Eng. Res. Rep., vol. 27, no. 3, pp. 127–136, Feb. 2025, doi: 10.9734/jerr/2025/v27i31423.
  108. A. Abisoye and J. I. Akerele, “A Scalable and Impactful Model for Harnessing Artificial Intelligence and Cybersecurity to Revolutionize Workforce Development and Empower Marginalized Youth),” Int. J. Multidiscip. Res. Growth Eval., vol. 3, no. 1, pp. 714–719, 2022, doi: 10.54660/.ijmrge.2022.3.1.714-719.
  109. E. C. Malthouse, Y. K. Hessary, K. A. Vakeel, R. Burke, and M. Fudurić, “An Algorithm for Allocating Sponsored Recommendations and Content: Unifying Programmatic Advertising and Recommender Systems,” J. Advert., vol. 48, no. 4, pp. 366–379, Aug. 2019, doi: 10.1080/00913367.2019.1652123.
  110. S. Mittal, M. A. Khan, D. Romero, and T. Wuest, “A critical review of smart manufacturing & Industry 4.0 maturity models: Implications for small and medium-sized enterprises (SMEs),” J. Manuf. Syst., vol. 49, pp. 194–214, Oct. 2018, doi: 10.1016/j.jmsy.2018.10.005.
  111. “A Systematic Review of the Literature on Digital Transformation: Insights and Implications for Strategy and Organizational Change - Hanelt - 2021 - Journal of Management Studies - Wiley Online Library.” Online]. Available: https://onlinelibrary.wiley.com/doi/full/10.1111/joms.12639

Publication Details

Published in : Volume 6 | Issue 4 | July-August 2023
Date of Publication : 2023-07-15
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 78-100
Manuscript Number : GISRRJ236414
Publisher : Technoscience Academy

ISSN : 2582-0095

Cite This Article :

Omolola Temitope Kufile, Bisayo Oluwatosin Otokiti, Abiodun Yusuf Onifade, Bisi Ogunwale, Chinelo Harriet Okolo, "Modeling Customer Retention Probability Using Integrated CRM and Email Analytics ", Gyanshauryam, International Scientific Refereed Research Journal (GISRRJ), ISSN : 2582-0095, Volume 6, Issue 4, pp.78-100, July-August.2023
URL : https://gisrrj.com/GISRRJ236414

Article Preview