Framework for Enhancing Decision-Making through Real-Time Health Information Dashboards in Tertiary Hospitals

Authors(3) :-Damilola Oluyemi Merotiwon, Opeyemi Olamide Akintimehin, Opeoluwa Oluwanifemi Akomolafe

The demand for real-time health information in tertiary hospitals has grown rapidly due to increasing patient loads, data complexity, and the necessity for time-sensitive clinical and administrative decisions. This paper proposes a comprehensive framework for implementing real-time health information dashboards (RHIDs) tailored to the operational and strategic decision-making needs of tertiary healthcare institutions. Using empirical evidence from Nigerian tertiary hospitals and supported by 100 unique academic references, this study evaluates current practices, identifies systemic challenges, and presents a robust model emphasizing data integration, visualization, and actionable intelligence. The proposed framework aims to bridge the existing data-to-decision gap, enabling stakeholders to make informed choices that enhance clinical outcomes, operational efficiency, and policy responsiveness. The results underscore the transformative potential of RHIDs in healthcare settings when effectively embedded into health information systems and governance structures.

Authors and Affiliations

Damilola Oluyemi Merotiwon
Independent Researcher, Texas. USA
Opeyemi Olamide Akintimehin
Department of Human Nutrition and Dietetics, University of Ibadan, Nigeria
Opeoluwa Oluwanifemi Akomolafe
Independent Researcher, UK

Real-Time Dashboards, Tertiary Hospitals, Decision-Making, Health Information Systems, Clinical Analytics, Data Visualization

  1. C. Chianumba, N. Ikhalea, A. Y. Mustapha, A. Y. Forkuo, and D. Osamika, “A Conceptual Framework for Leveraging Big Data and AI in Enhancing Healthcare Delivery and Public Health Policy,” vol. 5, no. 6, 2021.
  2. S. KOMI, E. C. CHIANUMBA, A. YEBOAH, D. O. FORKUO, and A. Y. MUSTAPHA, “A Conceptual Framework for Telehealth Integration in Conflict Zones and Post-Disaster Public Health Responses,” 2021, Online]. Available: https://www.researchgate.net/profile/Ernest-Chianumba/publication/391481410_A_Conceptual_Framework_for_Telehealth_Integration_in_Conflict_Zones_and_Post-Disaster_Public_Health_Responses/links/6819ccb7df0e3f544f5224b1/A-Conceptual-Framework-for-Telehealth-Integration-in-Conflict-Zones-and-Post-Disaster-Public-Health-Responses.pdf
  3. Zhuang, D. Concannon, and E. Manley, “A framework for evaluating dashboards in healthcare,” IEEE Trans. Vis. Comput. Graph., vol. 28, no. 4, pp. 1715–1731, 2022.
  4. Yoo, H. Hwang, and S. Jheon, “Hospital information systems: experience at the fully digitized Seoul National University Bundang Hospital,” J. Thorac. Dis., vol. 8, no. Suppl 8, pp. S637–S641, Aug. 2016, doi: 10.21037/jtd.2016.08.44.
  5. LEESI SATURDAY KOMI, ERNEST CHINONSO CHIANUMBA, ADELAIDE YEBOAH, DAMILOLA OSAMIKA FORKUO, ASHIATA YETUNDE MUSTAPHA, “Advances in Community-Led Digital Health Strategies for Expanding Access in Rural and Underserved Populations.” Online]. Available: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pZekPIgAAAAJ&pagesize=80&citation_for_view=pZekPIgAAAAJ:HDshCWvjkbEC
  6. S. KOMI, E. C. CHIANUMBA, A. YEBOAH, D. O. FORKUO, and A. Y. MUSTAPHA, “Advances in Public Health Outreach Through Mobile Clinics and Faith-Based Community Engagement in Africa,” 2021, Online]. Available: https://www.researchgate.net/profile/Ernest-Chianumba/publication/391481430_Advances_in_Public_Health_Outreach_Through_Mobile_Clinics_and_Faith-Based_Community_Engagement_in_Africa/links/6819c990df0e3f544f522459/Advances-in-Public-Health-Outreach-Through-Mobile-Clinics-and-Faith-Based-Community-Engagement-in-Africa.pdf
  7. Yoo et al., “A Real-Time Autonomous Dashboard for the Emergency Department: 5-Year Case Study,” JMIR MHealth UHealth, vol. 6, no. 11, p. e10666, Nov. 2018, doi: 10.2196/10666.
  8. X. Xie, Q. Chen, C. A. Hincapié, L. Hofstetter, C. G. Maher, and G. C. Machado, “Effectiveness of clinical dashboards as audit and feedback or clinical decision support tools on medication use and test ordering: a systematic review of randomized controlled trials”, Online]. Available: https://dx.doi.org/10.1093/jamia/ocac094
  9. Ashiata Yetunde Mustapha, Ernest Chinonso Chianumba, Adelaide Yeboah Forkuo, Damilola Osamika, Leesi Saturday Komi, “Systematic Review of Digital Maternal Health Education Interventions in Low-Infrastructure Environments.” Online]. Available: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pZekPIgAAAAJ&pagesize=80&citation_for_view=pZekPIgAAAAJ:JV2RwH3_ST0C
  10. Wang and T. A. Byrd, “Business analytics-enabled decision-making effectiveness through knowledge absorptive capacity in health care,” J. Knowl. Manag., vol. 21, no. 3, pp. 517–539, May 2017, doi: 10.1108/JKM-08-2015-0301.
  11. Y. Mustapha, E. C. Chianumba, A. Y. Forkuo, D. Osamika, and L. S. Komi, “Systematic Review of Mobile Health (mHealth) Applications for Infectious Disease Surveillance in Developing Countries,” Methodology, p. 66, 2018.
  12. M. Wahi and N. Dukach, “Visualizing Infection Surveillance Data for Policymaking Using Open Source Dashboarding,” Appl. Clin. Inform., vol. 10, pp. 534–542, Jul. 2019, doi: 10.1055/s-0039-1693649.
  13. “Systematic Review of Mobile Health (mHealth) Applications for Infectious Disease Surveillance in Developing Countries.” Online]. Available: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pZekPIgAAAAJ&pagesize=80&citation_for_view=pZekPIgAAAAJ:M3NEmzRMIkIC
  14. Y. Mustapha, E. C. Chianumba, A. Y. Forkuo, D. Osamika, and L. S. Komi, “Systematic Review of Mobile Health (mHealth) Applications for Infectious Disease Surveillance in Developing Countries,” Methodology, p. 66, 2018.
  15. Victor and A. Farooq, “Dashboard visualisation for healthcare performance management: Balanced scorecard metrics,” Asia Pac. J. Health Manag., vol. 16, no. 2, pp. 28–38, Jul. 2021, doi: 10.3316/informit.889482167113484.
  16. C. Okolo, E. A. Etukudoh, O. Ogunwole, G. O. Osho, and J. O. Basiru, “Policy-Oriented Framework for Multi-Agency Data Integration Across National Transportation and Infrastructure Systems,” J. Front. Multidiscip. Res., vol. 3, no. 1, pp. 140–149, 2022, doi: 10.54660/.IJFMR.2022.3.1.140-149.
  17. “Optimizing Smart Contract Development: A Practical Model for Gasless Transactions via Facial Recognition in Blockchain.” Online]. Available: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=BuNCiJUAAAAJ&citation_for_view=BuNCiJUAAAAJ:qjMakFHDy7sC
  18. -Y. Tseng et al., “Using real-time visualization system for data-driven decision support to achieve lung protective strategy: a retrospective observational study,” Crit. Care, vol. 26, no. 1, p. 253, Aug. 2022, doi: 10.1186/s13054-022-04091-0.
  19. C. Chianumba, N. Ikhalea, A. Y. Mustapha, A. Y. Forkuo, and D. Osamika, “International Journal of Social Science Exceptional Research,” 2022, Online]. Available: https://www.researchgate.net/profile/Ernest-Chianumba/publication/390917280_Developing_a_Predictive_Model_for_Healthcare_Compliance_Risk_Management_and_Fraud_Detection_Using_Data_Analytics/links/680255b3bd3f1930dd5ffd32/Developing-a-Predictive-Model-for-Healthcare-Compliance-Risk-Management-and-Fraud-Detection-Using-Data-Analytics.pdf
  20. -C. Tsai et al., “Design and implementation of a comprehensive AI dashboard for real-time prediction of adverse prognosis of ED patients,” in Healthcare, MDPI, 2022, p. 1498. Online]. Available: https://www.mdpi.com/2227-9032/10/8/1498
  21. Y. Mustapha, N. Ikhalea, E. C. Chianumba, and A. Y. Forkuo, “Developing an AI-Powered Predictive Model for Mental Health Disorder Diagnosis Using Electronic Health Records,” 2022, Online]. Available: https://www.researchgate.net/profile/Ernest-Chianumba/publication/390798323_Developing_an_AI-Powered_Predictive_Model_for_Mental_Health_Disorder_Diagnosis_Using_Electronic_Health_Records/links/67fe74c0bfbe974b23aa144b/Developing-an-AI-Powered-Predictive-Model-for-Mental-Health-Disorder-Diagnosis-Using-Electronic-Health-Records.pdf
  22. D. Tchoualeu et al., “Use of a district health information system 2 routine immunization dashboard for immunization program monitoring and decision making, Kano State, Nigeria,” Pan Afr. Med. J., vol. 40, no. Suppl 1, p. 2, Nov. 2021, doi: 10.11604/pamj.supp.2021.40.1.17313.
  23. Afrihyia, O. Omotayo, A. Y. Mustapha, O. O. Akomolafe, A. Y. Forkuo, and E. C. Chianumba, “Data Analytics in U.S. Public Health Policy: A Review of Applications in Healthcare Resource Allocation and Efficiency”.
  24. C. Okolo, E. A. Etukudoh, O. Ogunwole, G. O. Osho, and J. O. Basiru, “Advances in Integrated Geographic Information Systems and AI Surveillance for Real-Time Transportation Threat Monitoring,” J. Front. Multidiscip. Res., vol. 6, no. 1, pp. 130–139, 2022, doi: 10.54660/.IJFMR.2022.3.1.130-139.
  25. Adelaide Yeboah Forkuo, Ernest Chinonso Chianumba, Ashiata Yetunde Mustapha, Damilola Osamika, Leesi Saturday Komi, “Advances in digital diagnostics and virtual care platforms for primary healthcare delivery in West Africa.” Online]. Available: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pZekPIgAAAAJ&pagesize=80&citation_for_view=pZekPIgAAAAJ:maZDTaKrznsC
  26. S. KOMI, E. C. CHIANUMBA, A. YEBOAH, D. O. FORKUO, and A. Y. MUSTAPHA, “Advances in Community-Led Digital Health Strategies for Expanding Access in Rural and Underserved Populations,” 2021, Online]. Available: https://www.researchgate.net/profile/Leesi-Komi/publication/391486838_Advances_in_Community-Led_Digital_Health_Strategies_for_Expanding_Access_in_Rural_and_Underserved_Populations/links/681a42d5d1054b0207eab997/Advances-in-Community-Led-Digital-Health-Strategies-for-Expanding-Access-in-Rural-and-Underserved-Populations.pdf
  27. Teixeira Vania, Mori Analía, Usera Andres, Bacigalupo Juan Carlos, and Luna Daniel, “Performance Evaluation of Clinical Decision Support Systems (CDSS): Developing a Business Intelligence (BI) Dashboard,” in Studies in Health Technology and Informatics, IOS Press, 2019. doi: 10.3233/SHTI190339.
  28. S. Adelusi, D. Osamika, M. C. Kelvin-Agwu, A. Y. Mustapha, and N. Ikhalea, “A Deep Learning Approach to Predicting Diabetes Mellitus Using Electronic Health Records,” J Front Multidiscip Res, vol. 3, no. 1, pp. 47–56, 2022.
  29. S. Komi, E. C. Chianumba, A. Y. Forkuo, D. Osamika, and A. Y. Mustapha, “A Conceptual Framework for Training Community Health Workers Through Virtual Public Health Education Modules,” vol. 5, no. 11, 2022.
  30. G. Stadler, K. Donlon, J. D. Siewert, T. Franken, and N. E. Lewis, “Improving the Efficiency and Ease of Healthcare Analysis Through Use of Data Visualization Dashboards,” Big Data, vol. 4, no. 2, pp. 129–135, Jun. 2016, doi: 10.1089/big.2015.0059.
  31. Ogbuefi, A. C. Mgbame, O. E. Akpe, A. A. Abayomi, and O. O. Adeyelu, “Data Democratization: Making Advanced Analytics Accessible for Micro and Small Enterprises,” Int. J. Manag. Organ. Res., vol. 1, no. 1, pp. 199–212, 2022, doi: 10.54660/IJMOR.2022.1.1.199-212.
  32. F. Simpao, L. M. Ahumada, J. A. Gálvez, and M. A. Rehman, “A Review of Analytics and Clinical Informatics in Health Care,” J. Med. Syst., vol. 38, no. 4, p. 45, Apr. 2014, doi: 10.1007/s10916-014-0045-x.
  33. C. Ogeawuchi, O. E. Akpe, A. A. Abayomi, O. A. Agboola, E. Ogbuefi, and S. Owoade, “Systematic Review of Advanced Data Governance Strategies for Securing Cloud-Based Data Warehouses and Pipelines,” Iconic Res. Eng. J., vol. 6, no. 1, pp. 784–794, Jul. 2022.
  34. Sharma, B. G. Madhavi, A. Goyal, D. Parashar, L. Shrotriya, and A. Gupta, “Real-Time Data Analysis, Significance, Architectures and Applications for Informed Decision-Making,” in 2023 International Conference on Power Energy, Environment & Intelligent Control (PEEIC), Dec. 2023, pp. 298–302. doi: 10.1109/PEEIC59336.2023.10451556.
  35. Joseph Ozigi Basiru, Chinelo Linda Ejiofor, Ekene Cynthia Onukwulu, and Rita Uchenna Attah, “Streamlining procurement processes in engineering and construction companies: A comparative analysis of best practices,” Magna Sci. Adv. Res. Rev., vol. 6, no. 1, pp. 118–135, Oct. 2022, doi: 10.30574/msarr.2022.6.1.0073.
  36. Samson, “Improving Hospital Efficiency: Real-Time Data Integration for Optimized Patient Flow and Resource Allocation”.
  37. Oluchukwu Modesta Oluoha, Abisola Odeshina, Oluwatosin Reis, and Friday Okpeke, “(PDF) A Unified Framework for Risk-Based Access Control and Identity Management in Compliance-Critical Environments,” ResearchGate, May 2025, doi: 10.54660/.IJFMR.2022.3.1.23-34.
  38. Rosow, J. Adam, K. Coulombe, K. Race, and R. Anderson, “Virtual instrumentation and real-time executive dashboards: solutions for health care systems,” Nurs. Adm. Q., vol. 27, no. 1, pp. 58–76, 2003.
  39. A. Abayomi, B. C. Ubanadu, A. I. Daraojimba, O. A. Agboola, E. Ogbuefi, and S. Owoade, “A Conceptual Framework for Real-Time Data Analytics and Decision-Making in Cloud-Optimized Business Intelligence Systems,” Iconic Res. Eng. J., vol. 5, no. 9, pp. 713–722, Mar. 2022.
  40. Ernest Chinonso Chianumba, Nura Ikhalea, Ashiata Yetunde Mustapha, Adelaide Yeboah Forkuo, “A Conceptual Framework for AI in Health Systems: Enhancing Diagnosis and Treatment.” Online]. Available: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=qAHE9lsAAAAJ&cstart=20&pagesize=80&citation_for_view=qAHE9lsAAAAJ:_FxGoFyzp5QC
  41. Rabiei and S. Almasi, “Requirements and challenges of hospital dashboards: a systematic literature review,” BMC Med. Inform. Decis. Mak., vol. 22, no. 1, p. 287, Nov. 2022, doi: 10.1186/s12911-022-02037-8.
  42. C. C. A. Y. Forkuo, “A Conceptual Framework for AI in Health Systems: Enhancing Diagnosis and Treatment.” Online]. Available: https://www.researchgate.net/profile/Ernest-Chianumba/publication/390847834_A_Conceptual_Framework_for_AI_in_Health_Systems_Enhancing_Diagnosis_and_Treatment/links/68008737bfbe974b23aaee3a/A-Conceptual-Framework-for-AI-in-Health-Systems-Enhancing-Diagnosis-and-Treatment.pdf
  43. C. Okolo, E. A. Etukudoh, O. Ogunwole, G. O. Osho, and J. O. Basiru, “A Conceptual Model for Balancing Automation, Human Oversight, and Security in Next-Generation Transport Systems,” 2023, Online]. Available: https://www.researchgate.net/profile/Francess-Okolo-2/publication/391070666_A_Conceptual_Model_for_Balancing_Automation_Human_Oversight_and_Security_in_Next-Generation_Transport_Systems/links/681061a9bd3f1930dd67602c/A-Conceptual-Model-for-Balancing-Automation-Human-Oversight-and-Security-in-Next-Generation-Transport-Systems.pdf
  44. Y. Mustapha, N. Ikhalea, E. C. Chianumba, and A. Y. Forkuo, “A Model for Integrating AI and Big Data to Predict Epidemic Outbreaks,” J. Front. Multidiscip. Res., vol. 4, no. 1, pp. 157–176, 2023, doi: 10.54660/.IJFMR.2023.4.1.157-176.
  45. C. Kelvin-Agwu, A. Y. Mustapha, A. O. Mbata, B. O. Tomoh, A. Y. Forkuo, and T. O. Kolawole, “A Policy Framework for Strengthening Public Health Surveillance Systems in Emerging Economies,” vol. 6, no. 7, 2023.
  46. S. Pandit, A. H. B. Jalal, A. K. Toma, and P. Nachev, “Analyzing historical and future acute neurosurgical demand using an AI-enabled predictive dashboard,” Sci. Rep., vol. 12, no. 1, p. 7603, May 2022, doi: 10.1038/s41598-022-11607-9.
  47. Palanisamy and R. Thirunavukarasu, “Implications of big data analytics in developing healthcare frameworks – A review,” J. King Saud Univ. - Comput. Inf. Sci., vol. 31, no. 4, pp. 415–425, Oct. 2019, doi: 10.1016/j.jksuci.2017.12.007.
  48. C. Okolo, E. A. Etukudoh, O. Ogunwole, G. O. Osho, and J. O. Basiru, “Advances in Cyber-Physical Resilience of Transportation Infrastructure in Emerging Economies and Coastal Regions,” 2023, Online]. Available: https://www.researchgate.net/profile/Olufunmilayo-Ogunwole/publication/391018430_Advances_in_Cyber-Physical_Resilience_of_Transportation_Infrastructure_in_Emerging_Economies_and_Coastal_Regions/links/68083261bd3f1930dd630c43/Advances-in-Cyber-Physical-Resilience-of-Transportation-Infrastructure-in-Emerging-Economies-and-Coastal-Regions.pdf
  49. Ostropolets, L. Zhang, and G. Hripcsak, “A scoping review of clinical decision support tools that generate new knowledge to support decision making in real time,” J. Am. Med. Inform. Assoc., vol. 27, no. 12, pp. 1968–1976, Dec. 2020, doi: 10.1093/jamia/ocaa200.
  50. “Blockchain in Supply Chain Transparency: A Conceptual Framework for Real-Time Data Tracking and Reporting Using Blockchain and AI.” Online]. Available: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=BuNCiJUAAAAJ&citation_for_view=BuNCiJUAAAAJ:UeHWp8X0CEIC
  51. Nabovati, R. Farrahi, M. Sadeqi Jabali, R. Khajouei, and R. Abbasi, “Identifying and prioritizing the key performance indicators for hospital management dashboard at a national level: Viewpoint of hospital managers,” Health Informatics J., vol. 29, no. 4, p. 14604582231221139, Oct. 2023, doi: 10.1177/14604582231221139.
  52. Ikhalea, E. C. Chianumba, A. Y. Mustapha, and A. Y. Forkuo, “Developing a Knowledge Graph for Integrating Health Data from Multiple Sources,” 2023, Online]. Available: https://www.researchgate.net/profile/Anfo-Pub-2/publication/392194359_Developing_a_Knowledge_Graph_for_Integrating_Health_Data_from_Multiple_Sources/links/683856708a76251f22ea354d/Developing-a-Knowledge-Graph-for-Integrating-Health-Data-from-Multiple-Sources.pdf
  53. C. Kelvin-Agwu, A. Y. Mustapha, A. O. Mbata, B. O. Tomoh, and A. Y. Forkuo, “Development of AI-Assisted Wearable Devices for Early Detection of Respiratory Diseases,” 2023, Online]. Available: https://www.researchgate.net/profile/Anfo-Pub-2/publication/390124136_Development_of_AI-Assisted_Wearable_Devices_for_Early_Detection_of_Respiratory_Diseases/links/68064cbfbfbe974b23b42011/Development-of-AI-Assisted-Wearable-Devices-for-Early-Detection-of-Respiratory-Diseases.pdf
  54. O. KOLAWOLE, A. Y. MUSTAPHA, A. O. MBATA, B. O. TOMOH, A. Y. FORKUO, and M. C. KELVIN-AGWU, “Evaluating the Effectiveness of Community-Based Health Education Programs in Preventing Non-Communicable Diseases,” J. Name Missing, 2023, Accessed: May 28, 2025. Online]. Available: https://www.researchgate.net/profile/Adelaide-Forkuo/publication/390193068_Evaluating_the_Effectiveness_of_Community-Based_Health_Education_Programs_in_Preventing_Non-Communicable_Diseases/links/67e3cff2e62c604a0d15c649/Evaluating-the-Effectiveness-of-Community-Based-Health-Education-Programs-in-Preventing-Non-Communicable-Diseases.pdf
  55. R. Murphy, A. Savoy, T. Satterly, D. F. Sittig, and H. Singh, “Dashboards for visual display of patient safety data: a systematic review,” BMJ Health Care Inform., vol. 28, no. 1, p. e100437, 2021.
  56. E. Merrill et al., “Data Analytics in Clinical Laboratories: Advancing Diagnostic Medicine in the Digital Age”, Online]. Available: https://dx.doi.org/10.1093/clinchem/hvad183
  57. O. KOLAWOLE, A. Y. MUSTAPHA, A. O. MBATA, B. O. TOMOH, A. Y. FORKUO, and M. C. KELVIN-AGWU, “Evaluating the Effectiveness of Community-Based Health Education Programs in Preventing Non-Communicable Diseases,” J. Name Missing, 2023, Online]. Available: https://www.researchgate.net/profile/Adelaide-Forkuo/publication/390193068_Evaluating_the_Effectiveness_of_Community-Based_Health_Education_Programs_in_Preventing_Non-Communicable_Diseases/links/67e3cff2e62c604a0d15c649/Evaluating-the-Effectiveness-of-Community-Based-Health-Education-Programs-in-Preventing-Non-Communicable-Diseases.pdf
  58. C. Chianumba, N. Ikhalea, A. Y. Mustapha, A. Y. Forkuo, and D. Osamika, “Exploring the Role of AI and Machine Learning in Improving Healthcare Diagnostics and Personalized Medicine,” J. Front. Multidiscip. Res., vol. 4, no. 1, pp. 177–182, 2023, doi: 10.54660/.IJFMR.2023.4.1.177-182.
  59. Martinez-Millana, A. Lizondo, R. Gatta, S. Vera, V. T. Salcedo, and C. Fernandez-Llatas, “Process Mining Dashboard in Operating Rooms: Analysis of Staff Expectations with Analytic Hierarchy Process,” Int. J. Environ. Res. Public. Health, vol. 16, no. 2, Art. no. 2, Jan. 2019, doi: 10.3390/ijerph16020199.
  60. Ernest Chinonso Chianumba1, , Adelaide Yeboah Forkuo2, , Ashiata Yetunde Mustapha3, , Damilola Osamika4, , and Leesi Saturday Komi5, “Systematic Review of Maternal Mortality Reduction Strategies Using Technology-Enabled Interventions in Rural Clinics,” Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol..
  61. C. Okolo, E. A. Etukudoh, O. Ogunwole, G. O. Osho, and J. O. Basiru, “Strategic Approaches to Building Digital Workforce Capacity for Cybersecure Transportation Operations and Policy Compliance,” 2023, Online]. Available: https://www.researchgate.net/profile/Olufunmilayo-Ogunwole/publication/391017910_Strategic_Approaches_to_Building_Digital_Workforce_Capacity_for_Cybersecure_Transportation_Operations_and_Policy_Compliance/links/6808355cded433155736a22d/Strategic-Approaches-to-Building-Digital-Workforce-Capacity-for-Cybersecure-Transportation-Operations-and-Policy-Compliance.pdf
  62. Ltifi, E. Benmohamed, C. Kolski, and M. B. Ayed, “Adapted Visual Analytics Process for Intelligent Decision-Making: Application in a Medical Context,” Int. J. Inf. Technol. Decis. Mak., Feb. 2020, doi: 10.1142/S0219622019500470.
  63. C. Lim et al., “Toward a Learning Health Care System: A Systematic Review and Evidence-Based Conceptual Framework for Implementation of Clinical Analytics in a Digital Hospital,” Appl. Clin. Inform., vol. 13, no. 02, pp. 339–354, Mar. 2022, doi: 10.1055/s-0042-1743243.
  64. Osamika, B. S. Adelusi, M. C. Kelvin-Agwu, A. Y. Mustapha, and N. Ikhalea, “Predictive Analytics for Chronic Respiratory Diseases Using Big Data: Opportunities and Challenges,” Int. J. Multidiscip. Res. Growth Eval., vol. 4, no. 1, pp. 1084–1094, 2023, doi: 10.54660/.IJMRGE.2023.4.1.1084-1094.
  65. C. Okolo, E. A. Etukudoh, O. Ogunwole, G. O. Osho, and J. O. Basiru, “Systematic Review of Business Analytics Platforms in Enhancing Operational Efficiency in Transportation and Supply Chain Sectors,” Int. J. Multidiscip. Res. Growth Eval., vol. 4, no. 1, pp. 1199–1208, 2023, doi: 10.54660/.IJMRGE.2023.4.1.1199-1208.
  66. “The relationship between the use of information systems and the performance of strategic decision-making processes. An empirical analysis.” Online]. Available: https://bradscholars.brad.ac.uk/entities/publication/2186a6cf-cb88-434f-b023-f6abf68f3614
  67. -T. Lee et al., “Web-Based Dashboard for the Interactive Visualization and Analysis of National Risk-Standardized Mortality Rates of Sepsis in the US,” J. Med. Syst., vol. 44, no. 2, p. 54, Jan. 2020, doi: 10.1007/s10916-019-1509-9.
  68. Lee et al., “A novel concept for integrating and delivering health information using a comprehensive digital dashboard: An analysis of healthcare professionals’ intention to adopt a new system and the trend of its real usage,” Int. J. Med. Inf., vol. 97, pp. 98–108, Jan. 2017, doi: 10.1016/j.ijmedinf.2016.10.001.
  69. J. Chermack, Scenario Planning in Organizations: How to Create, Use, and Assess Scenarios. Berrett-Koehler Publishers, 2011.
  70. Lundberg, Successful with the Agile Spotify Framework: Squads, Tribes and Chapters - The Next Step After Scrum and Kanban? BoD – Books on Demand, 2020.
  71. “International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com”.
  72. Laurent, M. D. Moussa, C. Cirenei, B. Tavernier, R. Marcilly, and A. Lamer, “Development, implementation and preliminary evaluation of clinical dashboards in a department of anesthesia,” J. Clin. Monit. Comput., vol. 35, no. 3, pp. 617–626, May 2021, doi: 10.1007/s10877-020-00522-x.
  73. J. Vogus, “Mindful Organizing: Establishing and Extending the Foundations of Highly Reliable Performance,” Apr. 19, 2011, Social Science Research Network, Rochester, NY: 1904613. Online]. Available: https://papers.ssrn.com/abstract=1904613
  74. -H. Lai et al., “Integration of an Intensive Care Unit Visualization Dashboard (i-Dashboard) as a Platform to Facilitate Multidisciplinary Rounds: Cluster-Randomized Controlled Trial,” J. Med. Internet Res., vol. 24, no. 5, p. e35981, May 2022, doi: 10.2196/35981.
  75. Farooq, A. B. N. Abbey, and E. C. Onukwulu, “Optimizing Grocery Quality and Supply Chain Efficiency Using AI-Driven Predictive Logistics,” vol. 7, no. 1, 2023.
  76. ADENIYI K. ADELEKE ENOCH OLUWADUNMININU OGUNNOWO, MUSA ADEKUNLE ADEWOYIN, JOYCE EFEKPOGUA FIEMOTONGHA, THOMPSON ODION IGUNMA, “Systematic Review of Non-Destructive Testing Methods for Predictive Failure Analysis in Mechanical Systems.” Accessed: May 31, 2025. Online]. Available: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Mh-Z4rkAAAAJ&citation_for_view=Mh-Z4rkAAAAJ:_FxGoFyzp5QC
  77. ADENIYI K. ADELEKE ENOCH OLUWADUNMININU OGUNNOWO, MUSA ADEKUNLE ADEWOYIN, JOYCE EFEKPOGUA FIEMOTONGHA, THOMPSON ODION IGUNMA, “Advances in Thermofluid Simulation for Heat Transfer Optimization in Compact Mechanical Devices.” Online]. Available: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Mh-Z4rkAAAAJ&citation_for_view=Mh-Z4rkAAAAJ:roLk4NBRz8UC
  78. P. Onoja, O. Hamza, A. Collins, U. B. Chibunna, A. Eweja, and A. I. Daraojimba, “Digital Transformation and Data Governance: Strategies for Regulatory Compliance and Secure AI-Driven Business Operations,” J. Front. Multidiscip. Res., vol. 2, no. 1, pp. 43–55, 2021, doi: 10.54660/.IJFMR.2021.2.1.43-55.
  79. S. Khairat, A. Dukkipati, H. A. Lauria, T. Bice, D. Travers, and S. S. Carson, “The Impact of Visualization Dashboards on Quality of Care and Clinician Satisfaction: Integrative Literature Review,” JMIR Hum. Factors, vol. 5, no. 2, p. e22, May 2018, doi: 10.2196/humanfactors.9328.
  80. Karami and R. Safdari, “From Information Management to Information Visualization,” Appl. Clin. Inform., vol. 07, pp. 308–329, Dec. 2017, doi: 10.4338/ACI-2015-08-RA-0104.
  81. ADENIYI K. ADELEKE ENOCH OLUWADUNMININU OGUNNOWO, MUSA ADEKUNLE ADEWOYIN, JOYCE EFEKPOGUA FIEMOTONGHA, THOMPSON ODION IGUNMA, “A Conceptual Model for Simulation-Based Optimization of HVAC Systems Using Heat Flow Analytics.” Accessed: May 31, 2025. Online]. Available: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Mh-Z4rkAAAAJ&citation_for_view=Mh-Z4rkAAAAJ:ufrVoPGSRksC
  82. J. Hysong, C. Yang, J. Wong, M. K. Knox, P. O’Mahen, and L. A. Petersen, “Beyond Information Design: Designing Health Care Dashboards for Evidence-Driven Decision-Making,” Appl. Clin. Inform., vol. 14, no. 03, pp. 465–469, May 2023, doi: 10.1055/a-2068-6699.
  83. Hussain, M. Nauman, A. Alghuried, A. Alhudhaif, and N. Akhtar, “Leveraging big data analytics for enhanced clinical decision-making in healthcare,” IEEE Access, vol. 11, pp. 127817–127836, 2023.
  84. M. Hammed Almansour et al., “The Role Of Data Analytics In Medical Administration: Leveraging Information For Decision-Making.,” J. Namib. Stud., vol. 36, 2023, Online]. Available: https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=18635954&AN=179290133&h=pMBT0Q3MoOhvMP3ANicZSfg9Iqd%2B9VXGurKCyx3Sdo8P4jywb%2FUq5k9bHpQQuM0B5dnXHLhTsYNHH6VYb9fLSw%3D%3D&crl=c
  85. Halwani et al., “A real-time dashboard for managing pathology processes,” J. Pathol. Inform., vol. 7, p. 24, May 2016, doi: 10.4103/2153-3539.181768.
  86. Frestel, S. W. K. Teoh, C. Broderick, A. Dao, and M. Sajogo, “A health integrated platform for pharmacy clinical intervention data management and intelligent visual analytics and reporting,” Explor. Res. Clin. Soc. Pharm., vol. 12, p. 100332, Dec. 2023, doi: 10.1016/j.rcsop.2023.100332.
  87. Franklin et al., “Dashboard visualizations: Supporting real-time throughput decision-making,” J. Biomed. Inform., vol. 71, pp. 211–221, 2017.
  88. Fazaeli et al., “Development, Implementation, and User Evaluation of COVID-19 Dashboard in a Third-Level Hospital in Iran,” Appl. Clin. Inform., vol. 12, no. 05, pp. 1091–1100, Oct. 2021, doi: 10.1055/s-0041-1740188.
  89. S. Akter, N. Sultana, M. A. R. Khan, and M. Mohiuddin, “BUSINESS INTELLIGENCE-DRIVEN HEALTHCARE: INTEGRATING BIG DATA AND MACHINE LEARNING FOR STRATEGIC COST REDUCTION AND QUALITY CARE DELIVERY,” Am. J. Interdiscip. Stud., vol. 4, no. 02, Art. no. 02, Jun. 2023, doi: 10.63125/crv1xp27.
  90. Alavi, A. Khawaja, M. Asif, A. Ejaz, and A. and R. Jaffar, “Dashboard Utilization for Improvement in Key Performance Indicators (KPI) in Clinical Laboratory of Tertiary Care Hospital, Lahore Pakistan,” Med. Forum Mon., vol. 31, no. 12, Art. no. 12, 2020, Online]. Available: https://medicalforummonthly.com/index.php/mfm/article/view/2649
  91. A. Alyami, “Smart e-Health System for Real-time Tracking and Monitoring of Patients, Staff and Assets for Healthcare Decision Support in Saudi Arabia,” doctoral, Staffordshire University, 2018. Online]. Available: https://eprints.staffs.ac.uk/4728/
  92. Bucalon, T. Shaw, K. Brown, and J. Kay, “State-of-the-art Dashboards on Clinical Indicator Data to Support Reflection on Practice: Scoping Review,” JMIR Med. Inform., vol. 10, no. 2, p. e32695, Feb. 2022, doi: 10.2196/32695.
  93. C. Buttigieg, A. Pace, and C. Rathert, “Hospital performance dashboards: a literature review,” J. Health Organ. Manag., vol. 31, no. 3, pp. 385–406, 2017.
  94. Concannon, K. Herbst, and E. Manley, “Developing a Data Dashboard Framework for Population Health Surveillance: Widening Access to Clinical Trial Findings,” JMIR Form. Res., vol. 3, no. 2, p. e11342, Apr. 2019, doi: 10.2196/11342.
  95. Chatterji et al., “Development and Validation of a Health Information Technology Curriculum: Toward More Meaningful Use of Electronic Health Records,” Pedagogy Health Promot., vol. 3, no. 3, pp. 154–166, Sep. 2017, doi: 10.1177/2373379916669149.
  96. B. Cohen et al., “Aligning mission to digital health strategy in academic medical centers,” NPJ Digit. Med., vol. 5, no. 1, p. 67, 2022.
  97. Liu, W. Li, N. R. Aljohani, M. D. Lytras, S.-U. Hassan, and R. Nawaz, “A framework to evaluate the interoperability of information systems–Measuring the maturity of the business process alignment,” Int. J. Inf. Manag., vol. 54, p. 102153, 2020.
  98. R. Lyles, J. Adler-Milstein, C. Thao, S. Lisker, S. Nouri, and U. Sarkar, “Alignment of key stakeholders’ priorities for patient-facing tools in digital health: mixed methods study,” J. Med. Internet Res., vol. 23, no. 8, p. e24890, 2021.
  99. Milosevic and A. Bond, “Digital health Interoperability frameworks: use of RM-ODP standards,” in 2016 IEEE 20th International Enterprise Distributed Object Computing Workshop (EDOCW), IEEE, 2016, pp. 1–10. Online]. Available: https://ieeexplore.ieee.org/abstract/document/7584359/
  100. Nguyen, E. Bellucci, and L. T. Nguyen, “Electronic health records implementation: an evaluation of information system impact and contingency factors,” Int. J. Med. Inf., vol. 83, no. 11, pp. 779–796, 2014.
  101. M. Tran et al., “Digital health policy and programs for hospital care in Vietnam: scoping review,” J. Med. Internet Res., vol. 24, no. 2, p. e32392, 2022.

Publication Details

Published in : Volume 6 | Issue 5 | September-October 2023
Date of Publication : 2023-09-12
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 162-182
Manuscript Number : GISRRJ236514
Publisher : Technoscience Academy

ISSN : 2582-0095

Cite This Article :

Damilola Oluyemi Merotiwon, Opeyemi Olamide Akintimehin, Opeoluwa Oluwanifemi Akomolafe, "Framework for Enhancing Decision-Making through Real-Time Health Information Dashboards in Tertiary Hospitals", Gyanshauryam, International Scientific Refereed Research Journal (GISRRJ), ISSN : 2582-0095, Volume 6, Issue 5, pp.162-182, September-October.2023
URL : https://gisrrj.com/GISRRJ236514

Article Preview